Unitary groups in projective octave planes

F. D. Veldkamp

Compositio Mathematica (1968)

  • Volume: 19, Issue: 3, page 213-258
  • ISSN: 0010-437X

How to cite

top

Veldkamp, F. D.. "Unitary groups in projective octave planes." Compositio Mathematica 19.3 (1968): 213-258. <http://eudml.org/doc/88962>.

@article{Veldkamp1968,
author = {Veldkamp, F. D.},
journal = {Compositio Mathematica},
keywords = {foundations of geometry},
language = {eng},
number = {3},
pages = {213-258},
publisher = {Wolters-Noordhoff Publishing},
title = {Unitary groups in projective octave planes},
url = {http://eudml.org/doc/88962},
volume = {19},
year = {1968},
}

TY - JOUR
AU - Veldkamp, F. D.
TI - Unitary groups in projective octave planes
JO - Compositio Mathematica
PY - 1968
PB - Wolters-Noordhoff Publishing
VL - 19
IS - 3
SP - 213
EP - 258
LA - eng
KW - foundations of geometry
UR - http://eudml.org/doc/88962
ER -

References

top
  1. Artin, E., [1] Geometric Algebra. Interscience, New York1957. Zbl0077.02101MR82463
  2. Van der Blij, F. and T.A. Springer, [2] The arithmetics of octaves and of the group G2. Proc. Kon. Ned. Akad. Wet.A, 62(- Indag. Math.21), 406—418 (1959). Zbl0089.25803
  3. [3] Octaves and triality. Nieuw Archief Wisk. (3) 8, 158—169 (1960). Zbl0127.11804
  4. Braun, H. und M. Koecher, [4] Jordan-Algebren. Springer, Berlin1966. Zbl0145.26001MR204470
  5. Chevalley, C., [5] Sur certains groupes simples. Tôhoku Math. J. (2) 7, 14—66 (1955). Zbl0066.01503
  6. Dieudonné, J., [6] La géométrie des groupes classiques. 2e édition. Springer, Berlin1963. Zbl0111.03102MR158011
  7. Ferrar, J.C., [7] On Lie algebras of type E6. Dissertation Yale University1966. 
  8. Freudenthal, H., [8] Oktaven, Ausnahmegruppen und Oktavengeometrie. Utrecht1951 (Neuauflage 1960). Zbl0056.25905MR44533
  9. Jacobson, N., [9] Composition algebras and their automorphisms. Rend. Circ. Mat. PalermoII, 7, 55-80 (1958). Zbl0083.02702MR101253
  10. [10] Some groups of transformations defined by Jordan algebras, I, J. reine angew. Math.201, 178-195 (1959);II, ibid.204, 74—98 (1960);III, ibid.207, 61-95 (1961). Zbl0084.03601
  11. [11] Lie algebras. Interscience, New York1962. Zbl0121.27504
  12. [12] Triality and Lie algebras of type D4. Rend. Circ. Mat. PalermoII, 13, 129—153 (1964). Zbl0144.27103
  13. Moufang, R., [13] Zur Struktur von Alternativkörpern. Math. Ann.110, 416—430 (1934). Zbl0010.00403JFM60.0093.02
  14. Ono, T., [14] Sur les groupes de Chevalley. J. Math. Soc. Japan10, 307—313 (1958). Zbl0085.01705
  15. Seligman, G., [15] On automorphisms of Lie algebras of classical type. III. Transactions AMS97, 286—316 (1960). Zbl0097.02202
  16. Soda, D., [16] Groups of type D4 defined by Jordan algebras. Dissertation Yale University1964. 
  17. [17] Some groups of type D4 defined by Jordan algebras. J. reine angew. Math.223, 150-163 (1966). Zbl0142.26303MR201487
  18. Springer, T.A., [18] On a class of Jordan algebras. Proc. Kon. Ned. Akad. Wet.A, 62( — Indag. Math.21), 254-264 (1959). Zbl0092.03701
  19. [19] The projective octave plane. Ibid. A, 63(- Indag. Math.22), 74—101 (1960). Zbl0131.36901
  20. [20] The classification of reduced exceptional simple Jordan algebras. Ibid. 414-422 (1960). Zbl0098.02901MR147520
  21. [21] On the geometric algebra of octave planes. Ibid. A, 65( — Indag. Math.24), 451—468 (1962). Zbl0113.35903
  22. Springer, T.A. and F.D. Veldkamp, [22] Elliptic and hyperbolic octave planes. Ibid. A, 66( — Indag. Math.25), 413-451 (1963). Zbl0127.11503
  23. Steinberg, R., [23] Variations on a theme of Chevalley. Pacific J. Math.9, 875—891 (1959). Zbl0092.02505
  24. [24] The simplicity of certain groups. Ibid. 10, 1039-1041 (1960). Zbl0093.03503MR123646
  25. [25] Automorphisms of classical Lie algebras. Ibid. 11, 1119-1129 (1961). Zbl0104.02905MR143845
  26. Tits, J., [26] Le plan projectif des octaves et les groupes de Lie exceptionnels. Ac. Roy. Belg., Bull. Cl. Sci.39, 309-329 (1953). Zbl0050.25803MR54608
  27. [27] Le plan projectif des octaves et les groupes exceptionnels E6 et E7. Ibid. 40, 29—40 (1954). Zbl0055.13903
  28. [28] Les "formes réelles" des groupes de type E6. Sém. Bourbaki1957—1958, exposé 162. Zbl0084.25804
  29. [29] Algebraic and abstract simple groups. Ann. Math.80, 313-329 (1964). Zbl0131.26501MR164968
  30. Wonenburger, María J., [30] The Clifford algebra and the group of similitudes. Can. J. Math.14, 45-59 (1962). Zbl0100.25402MR132112
  31. [31] Triality principle for semisimilarities. J. of Algebra1, 335-341 (1964). Zbl0126.06001MR170960

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.