Unitary groups in projective octave planes

F. D. Veldkamp

Compositio Mathematica (1968)

  • Volume: 19, Issue: 3, page 213-258
  • ISSN: 0010-437X

How to cite

top

Veldkamp, F. D.. "Unitary groups in projective octave planes." Compositio Mathematica 19.3 (1968): 213-258. <http://eudml.org/doc/88962>.

@article{Veldkamp1968,
author = {Veldkamp, F. D.},
journal = {Compositio Mathematica},
keywords = {foundations of geometry},
language = {eng},
number = {3},
pages = {213-258},
publisher = {Wolters-Noordhoff Publishing},
title = {Unitary groups in projective octave planes},
url = {http://eudml.org/doc/88962},
volume = {19},
year = {1968},
}

TY - JOUR
AU - Veldkamp, F. D.
TI - Unitary groups in projective octave planes
JO - Compositio Mathematica
PY - 1968
PB - Wolters-Noordhoff Publishing
VL - 19
IS - 3
SP - 213
EP - 258
LA - eng
KW - foundations of geometry
UR - http://eudml.org/doc/88962
ER -

References

top
  1. Artin, E., [1] Geometric Algebra. Interscience, New York1957. Zbl0077.02101MR82463
  2. Van der Blij, F. and T.A. Springer, [2] The arithmetics of octaves and of the group G2. Proc. Kon. Ned. Akad. Wet.A, 62(- Indag. Math.21), 406—418 (1959). Zbl0089.25803
  3. [3] Octaves and triality. Nieuw Archief Wisk. (3) 8, 158—169 (1960). Zbl0127.11804
  4. Braun, H. und M. Koecher, [4] Jordan-Algebren. Springer, Berlin1966. Zbl0145.26001MR204470
  5. Chevalley, C., [5] Sur certains groupes simples. Tôhoku Math. J. (2) 7, 14—66 (1955). Zbl0066.01503
  6. Dieudonné, J., [6] La géométrie des groupes classiques. 2e édition. Springer, Berlin1963. Zbl0111.03102MR158011
  7. Ferrar, J.C., [7] On Lie algebras of type E6. Dissertation Yale University1966. 
  8. Freudenthal, H., [8] Oktaven, Ausnahmegruppen und Oktavengeometrie. Utrecht1951 (Neuauflage 1960). Zbl0056.25905MR44533
  9. Jacobson, N., [9] Composition algebras and their automorphisms. Rend. Circ. Mat. PalermoII, 7, 55-80 (1958). Zbl0083.02702MR101253
  10. [10] Some groups of transformations defined by Jordan algebras, I, J. reine angew. Math.201, 178-195 (1959);II, ibid.204, 74—98 (1960);III, ibid.207, 61-95 (1961). Zbl0084.03601
  11. [11] Lie algebras. Interscience, New York1962. Zbl0121.27504
  12. [12] Triality and Lie algebras of type D4. Rend. Circ. Mat. PalermoII, 13, 129—153 (1964). Zbl0144.27103
  13. Moufang, R., [13] Zur Struktur von Alternativkörpern. Math. Ann.110, 416—430 (1934). Zbl0010.00403JFM60.0093.02
  14. Ono, T., [14] Sur les groupes de Chevalley. J. Math. Soc. Japan10, 307—313 (1958). Zbl0085.01705
  15. Seligman, G., [15] On automorphisms of Lie algebras of classical type. III. Transactions AMS97, 286—316 (1960). Zbl0097.02202
  16. Soda, D., [16] Groups of type D4 defined by Jordan algebras. Dissertation Yale University1964. 
  17. [17] Some groups of type D4 defined by Jordan algebras. J. reine angew. Math.223, 150-163 (1966). Zbl0142.26303MR201487
  18. Springer, T.A., [18] On a class of Jordan algebras. Proc. Kon. Ned. Akad. Wet.A, 62( — Indag. Math.21), 254-264 (1959). Zbl0092.03701
  19. [19] The projective octave plane. Ibid. A, 63(- Indag. Math.22), 74—101 (1960). Zbl0131.36901
  20. [20] The classification of reduced exceptional simple Jordan algebras. Ibid. 414-422 (1960). Zbl0098.02901MR147520
  21. [21] On the geometric algebra of octave planes. Ibid. A, 65( — Indag. Math.24), 451—468 (1962). Zbl0113.35903
  22. Springer, T.A. and F.D. Veldkamp, [22] Elliptic and hyperbolic octave planes. Ibid. A, 66( — Indag. Math.25), 413-451 (1963). Zbl0127.11503
  23. Steinberg, R., [23] Variations on a theme of Chevalley. Pacific J. Math.9, 875—891 (1959). Zbl0092.02505
  24. [24] The simplicity of certain groups. Ibid. 10, 1039-1041 (1960). Zbl0093.03503MR123646
  25. [25] Automorphisms of classical Lie algebras. Ibid. 11, 1119-1129 (1961). Zbl0104.02905MR143845
  26. Tits, J., [26] Le plan projectif des octaves et les groupes de Lie exceptionnels. Ac. Roy. Belg., Bull. Cl. Sci.39, 309-329 (1953). Zbl0050.25803MR54608
  27. [27] Le plan projectif des octaves et les groupes exceptionnels E6 et E7. Ibid. 40, 29—40 (1954). Zbl0055.13903
  28. [28] Les "formes réelles" des groupes de type E6. Sém. Bourbaki1957—1958, exposé 162. Zbl0084.25804
  29. [29] Algebraic and abstract simple groups. Ann. Math.80, 313-329 (1964). Zbl0131.26501MR164968
  30. Wonenburger, María J., [30] The Clifford algebra and the group of similitudes. Can. J. Math.14, 45-59 (1962). Zbl0100.25402MR132112
  31. [31] Triality principle for semisimilarities. J. of Algebra1, 335-341 (1964). Zbl0126.06001MR170960

NotesEmbed ?

top

You must be logged in to post comments.