Laws of large numbers for functions of random walks with positive drift

A. J. Stam

Compositio Mathematica (1968)

  • Volume: 19, Issue: 4, page 299-333
  • ISSN: 0010-437X

How to cite

top

Stam, A. J.. "Laws of large numbers for functions of random walks with positive drift." Compositio Mathematica 19.4 (1968): 299-333. <http://eudml.org/doc/88967>.

@article{Stam1968,
author = {Stam, A. J.},
journal = {Compositio Mathematica},
language = {eng},
number = {4},
pages = {299-333},
publisher = {Wolters-Noordhoff Publishing},
title = {Laws of large numbers for functions of random walks with positive drift},
url = {http://eudml.org/doc/88967},
volume = {19},
year = {1968},
}

TY - JOUR
AU - Stam, A. J.
TI - Laws of large numbers for functions of random walks with positive drift
JO - Compositio Mathematica
PY - 1968
PB - Wolters-Noordhoff Publishing
VL - 19
IS - 4
SP - 299
EP - 333
LA - eng
UR - http://eudml.org/doc/88967
ER -

References

top
  1. H.D. Brunk [1] On the Application of the Individual Ergodic Theorem to Discrete Stochastic Processes. Trans. Amer. Math. Soc.78 (1955), 482—491. Zbl0068.12301
  2. R.V. Chacon and D.S. Ornstein [2] A General Ergodic Theorem. Illinois J. of Math.4 (1960), 153 —160. Zbl0134.12102
  3. K.L. Chung and C. Derman [3] Non-recurrent Random Walks. Pacific J. of Math.6 (1956), 441-447. Zbl0072.35301MR81587
  4. L.W. Cohen [4] On the Mean Ergodic Theorem. Ann. Math.41 (1940), 505 — 509. Zbl0024.21401JFM66.0560.02
  5. C. Derman [5] A note on Nonrecurrent Random Walks. Proc. Amer. Math. Soc.7 (1956), 762-765. Zbl0072.35302MR83221
  6. J.L. Doob [6] Stochastic Processes. Wiley, 1953. Zbl0053.26802MR58896
  7. N. Dunford and D.S. Miller [7] On the ergodic theorem, Trans. Amer. Math. Soc.60 (1946), 538 — 549. Zbl0063.01187
  8. W. Feller [8] An Introduction to Probability Theory and its Applications, Volume II. Wiley, 1966. Zbl0039.13201MR210154
  9. W. Feller and S. Orey [9] A Renewal Theorem. J. of Math. and Mech.10 (1961), 619—624. Zbl0096.33401
  10. T.E. Harris and H. Robbins [10] Ergodic Theory of Markov Chains Admitting an Infinite Invariant Measure. Proc. Nat. Ac. of Sc. U.S.A.39 (1953), 860—864. Zbl0051.10503
  11. G. Kallianpur and H. Robbins [11] The Sequence of Sums of Independent Random Variables. Duke Math. J.21 (1954), 285—307. Zbl0055.36704
  12. M. Loève [12] Probability Theory, Sec. Ed., Van Nostrand, 1960. Zbl0095.12201
  13. E. Lukacs [13] Characteristic Functions. Griffin, 1960. Zbl0087.33605
  14. H. Robbins [14] On the Equidistribution of Sums of Independent Random Variables. Proc. Amer. Math. Soc.4 (1953), 786—799. Zbl0053.26704
  15. M.G. Shur [15] On the Law of Large Numbers for Markov Processes. Theory of Prob. and its Appl.VIII (1963), 208-212. Zbl0127.35501
  16. A.V. Skorokhod and N.P. Slobodenyuk [16] Limit Theorems for Random WalksI. Theory of Prob. and its Appl.X (1965), 596-606; II, id. XI (1966), 46-57. Zbl0202.47403
  17. F. Spitzer [17] Principles of Random Walk. Van Nostrand, 1964. Zbl0119.34304MR171290
  18. A.J. Stam [18] On Shifting Iterated Convolutions I. Compos. Math.17 (1967), 268-280. Zbl0214.43704MR207019
  19. L. Takács [19] Introduction to the Theory of Queues. Oxford Univ. Press, N.Y., 1962. Zbl0106.33502MR133880

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.