Persistent and invariant formulas for outer extensions

Solomon Feferman

Compositio Mathematica (1968)

  • Volume: 20, page 29-52
  • ISSN: 0010-437X

How to cite


Feferman, Solomon. "Persistent and invariant formulas for outer extensions." Compositio Mathematica 20 (1968): 29-52. <>.

author = {Feferman, Solomon},
journal = {Compositio Mathematica},
keywords = {algebraic logic, model theory},
language = {eng},
pages = {29-52},
publisher = {Wolters-Noordhoff Publishing},
title = {Persistent and invariant formulas for outer extensions},
url = {},
volume = {20},
year = {1968},

AU - Feferman, Solomon
TI - Persistent and invariant formulas for outer extensions
JO - Compositio Mathematica
PY - 1968
PB - Wolters-Noordhoff Publishing
VL - 20
SP - 29
EP - 52
LA - eng
KW - algebraic logic, model theory
UR -
ER -


  1. K.J. Barwise [1] Infinitary logic and admissible sets, Dissertation, Stanford, 1967. 
  2. G. Choodnovsky [2] Some results in the theory of infinitely long expressions, (abstract) 3d Intl. Cong. for Logic, Methodology and Philosophy of Science, Amsterdam, 1967. 
  3. W. Craig [3] Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory, Journ. Symbolic Logic, v. 22 (1957), pp. 269 — 285. Zbl0079.24502
  4. S. Feferman [4] Systems of predicative analysis, Journ. Symbolic Logic, v. 29 (1964), pp.1-30. Zbl0134.01101MR193006
  5. S. Feferman [5] Predicative provability in set theory, (Research Announcement)Bull. Amer. Math. Soc., v. 72 (1966), pp. 486-489. Zbl0148.25403MR193008
  6. S. Feferman [6] Autonomous transfinite progressions and the extent of predicative mathematics, Proc. 3d Intl. Cong. for Logic, Methodology and Philosophy of Science Amsterdam, 1967 (to appear). Zbl0198.32302MR252196
  7. S. Feferman [7] Lectures on proof theory, Proc. Leeds Institute in Logic, Summer 1967 (to appear). Zbl0248.02033MR235996
  8. S. Feferman and G. Kreisel [8] Persistent and invariant formulas relative to theories of higher order, (Research Announcement)Bull. Amer. Math. Soc., v. 72 (1966) pp. 480-485. Zbl0234.02038MR193007
  9. H.J. Keisler [9] End extensions of models of set theory, Proc. A. M. S. Institute on Set Theory, U.C.L.A., 1967 (to appear). 
  10. G. Kreisel [10] The axiom of choice and the class of hyperarithmetic functions, Indag. Math. v. 24 (1962), pp. 307-319. Zbl0108.00802MR140418
  11. G. Kreisel [11] Relative recursiveness in metarecursion theory (abstract)Journ. Symbolic Logic, v. 33 (1967) p. 442. 
  12. K. Kunen [12] Implicit definability and infinitary languages, Journ. Symbolic Logic (to appear). Zbl0195.30202MR237307
  13. E.G.K. Lopez-Escobar [13] An interpolation theorem for denumerably long formulas, Fund. Math. v. 57 (1965) pp. 253-272. Zbl0137.00701MR188059
  14. R. Lyndon [14] Properties preserved under homomorphism, Pacif. Journ. Math. v. 9 (1959), pp. 143-154. Zbl0093.01101MR108441
  15. J.I. Malitz [15] Problems in the model theory of infinite languages, Dissertation, Berkeley, 1966. 
  16. A. Mostowski [16] On invariant, dual invariant and absolute formulas, Rozprawy Math. v. 29 (1962), pp. 1-38. Zbl0106.00502MR168458
  17. S. Orey [17] Model theory for higher order predicate calculus, Trans. Amer. Math. Soc. v. 92 (1959), pp. 72-84. Zbl0088.01004MR107600
  18. A. Robinson [18] Introduction to model theory and to the metamathematics of algebra, North-Holland Publ. Co., Amsterdam, 1963. Zbl0118.25302MR153570
  19. D. Scott [19] Logic with denumerably long formulas and finite strings of quantifiers, in The theory of models (Proc.1963 Symposium at Berkeley) North-Holland Publ. Co., Amsterdam (1965), pp. 329-341. Zbl0166.26003MR200133
  20. A. Tarski [20] Contributions to the theory of models, Indag. Math. v.16 (1954), Part I pp. 572-581, Part II pp. 582-588. Zbl0058.24702
  21. G. Krfisfl and J.L. Krivine [21] Elements of mathematical logic (model theory), North-Holland Publ. Co., Amsterdam (1967). Zbl0155.33801MR219380

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.