The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space

H. J. Brascamp

Compositio Mathematica (1969)

  • Volume: 21, Issue: 1, page 59-80
  • ISSN: 0010-437X

How to cite

top

Brascamp, H. J.. "The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space." Compositio Mathematica 21.1 (1969): 59-80. <http://eudml.org/doc/88997>.

@article{Brascamp1969,
author = {Brascamp, H. J.},
journal = {Compositio Mathematica},
keywords = {integral equations, integral transforms},
language = {eng},
number = {1},
pages = {59-80},
publisher = {Wolters-Noordhoff Publishing},
title = {The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space},
url = {http://eudml.org/doc/88997},
volume = {21},
year = {1969},
}

TY - JOUR
AU - Brascamp, H. J.
TI - The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space
JO - Compositio Mathematica
PY - 1969
PB - Wolters-Noordhoff Publishing
VL - 21
IS - 1
SP - 59
EP - 80
LA - eng
KW - integral equations, integral transforms
UR - http://eudml.org/doc/88997
ER -

References

top
  1. F. Smithies [1] Integral equations; Cambridge Un. Press, Cambridge (1958). Zbl0082.31901MR104991JFM61.0423.01
  2. A.C. Zaanen [2] Linear analysis; North Holland, Amsterdam and Noordhoff, Groningen (1953). Zbl0053.25601
  3. R. Schatten [3] Norm ideals of completely continuous operators; Springer, Berlin (1960). Zbl0090.09402MR119112
  4. R. Bellman [4] Introduction to matrix analysis; McGraw-Hill, New York (1960). Zbl0124.01001MR122820
  5. E.C. Titchmarsh [5] Theory of Fourier integrals; Oxford Un. Press, Oxford (1937). Zbl0017.40404JFM63.0367.05
  6. E.C. Titchmarsh [6] Theory of functions; Oxford Un. Press, Oxford (1932). Zbl0005.21004MR197687
  7. S. Hartman and J. Mikusiński [7] The theory of Lebesgue measure and integration; Pergamon Press, Oxford (1961). Zbl0095.04301MR123662
  8. I. Fredholm [8] Sur une classe d'equations fonctionnelles; Acta Math. 27 (1903) 365-390. Zbl34.0422.02JFM34.0422.02
  9. J. Plemelj [9] Zur Theorie der Fredholmschen Funktionalgleichungen; Mh. Math. Phys.15 (1904) 93-128. Zbl35.0775.01JFM35.0775.01
  10. A.F. Ruston [10] On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space; Proc. Lond. Math. Soc. (2) 53 (1951) 109 —124. Zbl0054.04906
  11. A.F. Ruston [11] ] Direct products of Banach spaces and linear functional equations; Proc. Lond. Math. Soc. (3) 1 (1953) 327-384. Zbl0043.11003MR44734
  12. A.F. Ruston [12] Formulae of Fredholm type for compact linear operators on a general Banach space; Proc. Lond. Math. Soc. (3) 3 (1953) 368-377. Zbl0050.34203MR56834
  13. T. Leżański [13] The Fredholm theory of linear equations in Banach spaces; Studia Math. 13 (1953) 244-276. Zbl0052.12603MR59472
  14. C. Van Winter and H.J. Brascamp [14] The n-body problem with spin-orbit or Coulomb interactions; Commun. Math. Phys.11 (1968) 19-55. MR260334
  15. T. Carleman [15] Zur Theorie der linearen Integralgleichungen; Math. Z.9 (1921) 196-217. Zbl48.1249.01MR1544464JFM48.1249.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.