The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space

H. J. Brascamp

Compositio Mathematica (1969)

  • Volume: 21, Issue: 1, page 59-80
  • ISSN: 0010-437X

How to cite

top

Brascamp, H. J.. "The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space." Compositio Mathematica 21.1 (1969): 59-80. <http://eudml.org/doc/88997>.

@article{Brascamp1969,
author = {Brascamp, H. J.},
journal = {Compositio Mathematica},
keywords = {integral equations, integral transforms},
language = {eng},
number = {1},
pages = {59-80},
publisher = {Wolters-Noordhoff Publishing},
title = {The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space},
url = {http://eudml.org/doc/88997},
volume = {21},
year = {1969},
}

TY - JOUR
AU - Brascamp, H. J.
TI - The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space
JO - Compositio Mathematica
PY - 1969
PB - Wolters-Noordhoff Publishing
VL - 21
IS - 1
SP - 59
EP - 80
LA - eng
KW - integral equations, integral transforms
UR - http://eudml.org/doc/88997
ER -

References

top
  1. F. Smithies [1] Integral equations; Cambridge Un. Press, Cambridge (1958). Zbl0082.31901MR104991JFM61.0423.01
  2. A.C. Zaanen [2] Linear analysis; North Holland, Amsterdam and Noordhoff, Groningen (1953). Zbl0053.25601
  3. R. Schatten [3] Norm ideals of completely continuous operators; Springer, Berlin (1960). Zbl0090.09402MR119112
  4. R. Bellman [4] Introduction to matrix analysis; McGraw-Hill, New York (1960). Zbl0124.01001MR122820
  5. E.C. Titchmarsh [5] Theory of Fourier integrals; Oxford Un. Press, Oxford (1937). Zbl0017.40404JFM63.0367.05
  6. E.C. Titchmarsh [6] Theory of functions; Oxford Un. Press, Oxford (1932). Zbl0005.21004MR197687
  7. S. Hartman and J. Mikusiński [7] The theory of Lebesgue measure and integration; Pergamon Press, Oxford (1961). Zbl0095.04301MR123662
  8. I. Fredholm [8] Sur une classe d'equations fonctionnelles; Acta Math. 27 (1903) 365-390. Zbl34.0422.02JFM34.0422.02
  9. J. Plemelj [9] Zur Theorie der Fredholmschen Funktionalgleichungen; Mh. Math. Phys.15 (1904) 93-128. Zbl35.0775.01JFM35.0775.01
  10. A.F. Ruston [10] On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space; Proc. Lond. Math. Soc. (2) 53 (1951) 109 —124. Zbl0054.04906
  11. A.F. Ruston [11] ] Direct products of Banach spaces and linear functional equations; Proc. Lond. Math. Soc. (3) 1 (1953) 327-384. Zbl0043.11003MR44734
  12. A.F. Ruston [12] Formulae of Fredholm type for compact linear operators on a general Banach space; Proc. Lond. Math. Soc. (3) 3 (1953) 368-377. Zbl0050.34203MR56834
  13. T. Leżański [13] The Fredholm theory of linear equations in Banach spaces; Studia Math. 13 (1953) 244-276. Zbl0052.12603MR59472
  14. C. Van Winter and H.J. Brascamp [14] The n-body problem with spin-orbit or Coulomb interactions; Commun. Math. Phys.11 (1968) 19-55. MR260334
  15. T. Carleman [15] Zur Theorie der linearen Integralgleichungen; Math. Z.9 (1921) 196-217. Zbl48.1249.01MR1544464JFM48.1249.01

NotesEmbed ?

top

You must be logged in to post comments.