Projective modules over clean orders

K. W. Roggenkamp

Compositio Mathematica (1969)

  • Volume: 21, Issue: 2, page 185-194
  • ISSN: 0010-437X

How to cite

top

Roggenkamp, K. W.. "Projective modules over clean orders." Compositio Mathematica 21.2 (1969): 185-194. <http://eudml.org/doc/89011>.

@article{Roggenkamp1969,
author = {Roggenkamp, K. W.},
journal = {Compositio Mathematica},
keywords = {associative rings},
language = {eng},
number = {2},
pages = {185-194},
publisher = {Wolters-Noordhoff Publishing},
title = {Projective modules over clean orders},
url = {http://eudml.org/doc/89011},
volume = {21},
year = {1969},
}

TY - JOUR
AU - Roggenkamp, K. W.
TI - Projective modules over clean orders
JO - Compositio Mathematica
PY - 1969
PB - Wolters-Noordhoff Publishing
VL - 21
IS - 2
SP - 185
EP - 194
LA - eng
KW - associative rings
UR - http://eudml.org/doc/89011
ER -

References

top
  1. M. Auslander and O. Goldman [1] Maximal orders. Trans. Amer. Math. Soc.97 (1960), 1— 24. Zbl0117.02506
  2. H. Bass [2] The Morita theorems. Mimeo. notes, Univ. of Oregon, 1962. 
  3. C.W. Curtis and I. Reiner [3] Representation theory of finite groups and associative algebras. Interscience, N.Y.1962. Zbl0131.25601MR144979
  4. M. Eichleir [4] Über die Idealklassenzahl hyperkomplexer Systeme, Math. Z.43 (1937), 481-494. Zbl0018.20201JFM64.0085.01
  5. D.G. Higman [5] On orders in separable algebras. Can. J. Math.7 (1955), 509 — 515. Zbl0065.26002
  6. H. Jacobinski [6] Über die Geschlechter von Gittern über Ordnungen. J. für reine und angew. Math., to appear. Zbl0157.10403MR229676
  7. J.M. Maranda [7] On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings. Can. J. Math.7 (1955), 516-526. Zbl0065.26101MR88498
  8. I. Reiner [8] The Krull-Schmidt-theorem for integral group representations. Bull. Amer. Math. Soc.67 (1961), 365-367. Zbl0099.01504MR138689
  9. K.W. Roggenkamp [9] On the irreducible representations of orders. MS, U. of Illinois, 1967. 
  10. K.W. Roggenkamp [10] A counterexample to a conjecture of A. V. Roiter. Notices Amer. Math. Soc.14 (1967), 530 (67T-372). 
  11. A.V. Roiter [11] On the integral representations, belonging to one genus. Izv. Akad. Nauk, SSSR30 (1966), 1315-1324. Zbl0232.20006MR213391
  12. J.R. Strooker [12] Faithfully projective modules and clean algebras. Ph.D. thesis, Reichsuniversität Utrecht, 1965. Zbl0192.38002MR217115
  13. R. Swan [13] Induced representations and projective modules. Ann. Math.71 (1960), 552-578. Zbl0104.25102MR138688
  14. R. Swan [14] Projective modules over group rings and maximal orders. Ann. Math.76 (1962), 55-61. Zbl0112.02702MR139635
  15. R. Swan [15] The Grothendieck ring of a finite group. Topology, 2 (1963), 85-110. Zbl0119.02905MR153722
  16. H. Zassenhaus [16] Neuer Beweis der Endlichkeit der Klassen- bei unimodularer Äquivalenz endlicher ganzzähliger Substitutionsgruppen. Hamb. Abh.12 (1938), 276-288. Zbl0021.30001JFM64.0965.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.