Generalized quotients of hemirings

James R. Mosher

Compositio Mathematica (1970)

  • Volume: 22, Issue: 3, page 275-281
  • ISSN: 0010-437X

How to cite

top

Mosher, James R.. "Generalized quotients of hemirings." Compositio Mathematica 22.3 (1970): 275-281. <http://eudml.org/doc/89059>.

@article{Mosher1970,
author = {Mosher, James R.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {275-281},
publisher = {Wolters-Noordhoff Publishing},
title = {Generalized quotients of hemirings},
url = {http://eudml.org/doc/89059},
volume = {22},
year = {1970},
}

TY - JOUR
AU - Mosher, James R.
TI - Generalized quotients of hemirings
JO - Compositio Mathematica
PY - 1970
PB - Wolters-Noordhoff Publishing
VL - 22
IS - 3
SP - 275
EP - 281
LA - eng
UR - http://eudml.org/doc/89059
ER -

References

top
  1. P. Allen [1] Ideal theory in semirings, Dissertation, Texas Christian University, 1967. 
  2. S. Bourne AND H. Zassenhaus [2] On the semiradical of a semiring, Proc. Nat. Acad. Sci. U.S.A., Vol. 44 (1958), 907-914. Zbl0084.03403MR97430
  3. J. Dieudonné [3] Topics in Local Algebra, Notre Dame Mathematical Lectures Number 10, Notre Dame, Indiana: Notre Dame Press, 1967. Zbl0193.00101MR241408
  4. M. Henriksen [4] Ideals in semirings with commutative addition, Notices A.M.S., Vol. 5 (1958) 321. 
  5. K. Iizuka [5] On the Jacobson radical of a semiring, Tohoku Math. J., Vol. 2 (1959) 409-421. Zbl0122.25504MR110736
  6. F. Lambek [6] Lectures on Rings and Modules, Toronto: Blaisdell Publishing Co., 1966. Zbl0143.26403MR206032
  7. D. Latorre [7] On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen, Vol. 12 (1965) 219-226. Zbl0168.28302MR200315
  8. K. Murata [8] On the quotient semigroup of a non-commutative semigroup, Osaka Math. J., Vol. 2 (1950) 1-5. Zbl0036.29301MR36753
  9. M. Nagata [9] Local Rings, Interscience Tracts in Pure and Applied Mathematics Number 13, New York: Interscience Publishers, 1962. Zbl0123.03402MR155856
  10. H. Weinert [10] Über Halbringe und Halbkörper II, Acta Math. Acad. Sci. Hungary, Vol. 14 (1963), 209-227. Zbl0125.01002MR148713
  11. O. Zariski AND P. Samuel [11] Commutative Algebra, Vol. 1, Princeton: D. Van Nostrand Co., Inc., 1959. Zbl0121.27801

NotesEmbed ?

top

You must be logged in to post comments.