The topological spherical space form problem I

C. B. Thomas; C. T. C. Wall

Compositio Mathematica (1971)

  • Volume: 23, Issue: 1, page 101-114
  • ISSN: 0010-437X

How to cite

top

Thomas, C. B., and Wall, C. T. C.. "The topological spherical space form problem I." Compositio Mathematica 23.1 (1971): 101-114. <http://eudml.org/doc/89070>.

@article{Thomas1971,
author = {Thomas, C. B., Wall, C. T. C.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {101-114},
publisher = {Wolters-Noordhoff Publishing},
title = {The topological spherical space form problem I},
url = {http://eudml.org/doc/89070},
volume = {23},
year = {1971},
}

TY - JOUR
AU - Thomas, C. B.
AU - Wall, C. T. C.
TI - The topological spherical space form problem I
JO - Compositio Mathematica
PY - 1971
PB - Wolters-Noordhoff Publishing
VL - 23
IS - 1
SP - 101
EP - 114
LA - eng
UR - http://eudml.org/doc/89070
ER -

References

top
  1. H. Bass et al. [1] Algebraic K-theory and its geometric applications. Lecture notes 108, Springer Verlag (1969). Zbl0185.00105MR271193
  2. H. Cartan AND S. Eilenberg [2] Homological algebra. Princeton U.P. (1956). Zbl0075.24305MR77480
  3. L. Dickson [3] Linear Groups. Teubner (Leipzig, 1901). Zbl32.0134.03JFM32.0128.01
  4. R. Kirby AND L. Siebenmann [4] On the triangulation of manifolds and the Hauptvermutung. Preprint I.A.S. Princeton (1968). Zbl0189.54701MR242166
  5. T.Y. Lam [5] Artin exponents for finite groups. J. of Algebra9 (1968), 94-119. Zbl0277.20006
  6. J.W. Milnor [6] Groups which operate on Sn without fixed points. Amer. J. Math.79 (1957), 612-623. Zbl0078.16304MR90056
  7. L. Siebenmann [7] Remarks on topological manifolds. Notices A.M.S.16 (1969), 698. Zbl0195.53802
  8. M. Spivak [8] Spaces satisfying Poincaré duality. Topology6 (1967), 77-101. Zbl0185.50904MR214071
  9. D. Sullivan [9] Geometric topology. Preprint, Princeton (1967). 
  10. R.G. Swan [10] A new method in fixed point theory. Comm. Math. Hel.34 (1960), 1-16. Zbl0144.22602MR115176
  11. R.G. Swan [11] Periodic resolutions for finite groups. Annals of Math.72 (1960), 267-291. Zbl0096.01701MR124895
  12. R.G. Swan [12] The p-period of a finite group. Ill. J. Math.4 (1960), 341-346. Zbl0095.02002MR122856
  13. C.B. Thomas [13] The oriented homotopy type of compact 3-manifolds. Proc. London Math. Soc. (3), 19 (1969), 31-44. Zbl0167.21502MR248838
  14. C.T.C. Wall [14] Finiteness conditions for CW complexes II. Proc. Royal SocietyA295 (1966), 129-139. Zbl0152.21902MR211402
  15. C.T.C. Wall [15] Poincaré complexes I. Annals of Math.86 (1967), 213-245. Zbl0153.25401MR217791
  16. C.T.C. Wall [16] Free piecewise linear involutions on spheres. Bull. AM.S.74 (1968), 554-558. Zbl0201.56301MR222905
  17. C.T.C. Wall [17] Surgery of compact manifolds. Preprint, Liverpool University (1967). MR1687388
  18. C.T.C. Wall [18] Free actions on spheres by cyclic groups of odd order. Preprint, Liverpool University (1969). 
  19. J. Wolf [19] Spaces of constant curvature. McGraw Hill (New York, 1967). Zbl0162.53304MR217740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.