Choice sequences and Markov's principle
Compositio Mathematica (1972)
- Volume: 24, Issue: 1, page 33-53
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- Errett Bishop [1] Mathematics as a numerical language, Intuitionism and Proof Theory, edited by John Myhill, A. Kino and R. E. Vesley, North-Holland, Amsterdam, (1970), 53-71. Zbl0205.01201MR270894
- Kurt Gödel [2] Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica12 (1958), 280-287. Zbl0090.01003MR102482
- S.C. Kleene [3] Classical extensions of intuitionistic mathematics, Proceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science, edited by Y. Bar-Hillel, North-Holland, Amsterdam, (1965), 31-44. Zbl0192.03002MR209124
- S.C. Kleene [4] Countable functionals, Constructivity in Mathematics, edited by A. Heyting, North-Holland, Amsterdam, (1959), 81-100. Zbl0100.24901MR112837
- S.C. Kleene [5] Introduction to Metamathematics, Van Nostrand, New York, 1952. Zbl0047.00703MR51790
- S.C. Kleene And R.E. Vesley [6] The Foundations of Intuitionistic Mathematics, North-Holland, Amsterdam, 1965. Zbl0133.24601MR176922
- G. Kreisel [7] Interpretation of analysis by means of constructive functionals of finite types, Constructivity in Mathematics, edited by A. Heyting, North-Holland, Amsterdam (1959), 101-128. Zbl0134.01001MR106838
- G. Kreisel [8] On weak completeness of intuitionistic predicate logic, Journal of Symbolic Logic, vol. 27 (1962), 139-158. Zbl0117.01005MR161796
- John Myhill [9] Lecture notes for a seminar in logic, S.U.N.Y. at Buffalo, Spring 1969, and University of Michigan, Fall 1969.
- M. Yasugi [10] Intuitionistic analysis and Gödel's interpretation, Journal of the Mathematical Society of Japan, vol. 15 (1963), 101-112. Zbl0117.25702MR152438