Choice sequences and Markov's principle

R. E. Vesley

Compositio Mathematica (1972)

  • Volume: 24, Issue: 1, page 33-53
  • ISSN: 0010-437X

How to cite

top

Vesley, R. E.. "Choice sequences and Markov's principle." Compositio Mathematica 24.1 (1972): 33-53. <http://eudml.org/doc/89109>.

@article{Vesley1972,
author = {Vesley, R. E.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {33-53},
publisher = {Wolters-Noordhoff Publishing},
title = {Choice sequences and Markov's principle},
url = {http://eudml.org/doc/89109},
volume = {24},
year = {1972},
}

TY - JOUR
AU - Vesley, R. E.
TI - Choice sequences and Markov's principle
JO - Compositio Mathematica
PY - 1972
PB - Wolters-Noordhoff Publishing
VL - 24
IS - 1
SP - 33
EP - 53
LA - eng
UR - http://eudml.org/doc/89109
ER -

References

top
  1. Errett Bishop [1] Mathematics as a numerical language, Intuitionism and Proof Theory, edited by John Myhill, A. Kino and R. E. Vesley, North-Holland, Amsterdam, (1970), 53-71. Zbl0205.01201MR270894
  2. Kurt Gödel [2] Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica12 (1958), 280-287. Zbl0090.01003MR102482
  3. S.C. Kleene [3] Classical extensions of intuitionistic mathematics, Proceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science, edited by Y. Bar-Hillel, North-Holland, Amsterdam, (1965), 31-44. Zbl0192.03002MR209124
  4. S.C. Kleene [4] Countable functionals, Constructivity in Mathematics, edited by A. Heyting, North-Holland, Amsterdam, (1959), 81-100. Zbl0100.24901MR112837
  5. S.C. Kleene [5] Introduction to Metamathematics, Van Nostrand, New York, 1952. Zbl0047.00703MR51790
  6. S.C. Kleene And R.E. Vesley [6] The Foundations of Intuitionistic Mathematics, North-Holland, Amsterdam, 1965. Zbl0133.24601MR176922
  7. G. Kreisel [7] Interpretation of analysis by means of constructive functionals of finite types, Constructivity in Mathematics, edited by A. Heyting, North-Holland, Amsterdam (1959), 101-128. Zbl0134.01001MR106838
  8. G. Kreisel [8] On weak completeness of intuitionistic predicate logic, Journal of Symbolic Logic, vol. 27 (1962), 139-158. Zbl0117.01005MR161796
  9. John Myhill [9] Lecture notes for a seminar in logic, S.U.N.Y. at Buffalo, Spring 1969, and University of Michigan, Fall 1969. 
  10. M. Yasugi [10] Intuitionistic analysis and Gödel's interpretation, Journal of the Mathematical Society of Japan, vol. 15 (1963), 101-112. Zbl0117.25702MR152438

NotesEmbed ?

top

You must be logged in to post comments.