A homotopy theoretic characterization of the translation in
Compositio Mathematica (1972)
- Volume: 24, Issue: 1, page 55-61
- ISSN: 0010-437X
Access Full Article
topHow to cite
topHusch, L. S.. "A homotopy theoretic characterization of the translation in $E^n$." Compositio Mathematica 24.1 (1972): 55-61. <http://eudml.org/doc/89110>.
@article{Husch1972,
author = {Husch, L. S.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {55-61},
publisher = {Wolters-Noordhoff Publishing},
title = {A homotopy theoretic characterization of the translation in $E^n$},
url = {http://eudml.org/doc/89110},
volume = {24},
year = {1972},
}
TY - JOUR
AU - Husch, L. S.
TI - A homotopy theoretic characterization of the translation in $E^n$
JO - Compositio Mathematica
PY - 1972
PB - Wolters-Noordhoff Publishing
VL - 24
IS - 1
SP - 55
EP - 61
LA - eng
UR - http://eudml.org/doc/89110
ER -
References
top- E.M. Brown. [1] Unknotting in M2×I. Trans. Amer. Math. Soc.123 (1966), 480-505. Zbl0151.32903MR198482
- M. Brown [2] Locally flat imbeddings of topological manifolds. Ann. of Math. (2) 75 (1962), 331-341. Zbl0201.56202MR133812
- M. Brown And H. Gluck [3] Stable structures on manifolds: I-III. Ann. of Math. (2) 79 (1964), 1-58. Zbl0122.17903MR158383
- M.L. Curtis And K.W. Kwun [4] Infinite sums of manifolds. Topology3 (1965), 31-42. Zbl0137.17701MR176457
- J. Dancis [5] Topological analogues of combinatorial techniques. Conference on the Topology of Manifolds, Prindle, Weber & Schmidt, Inc., Boston, Mass., (1968), 31-46. Zbl0181.51601MR234469
- D.B.A. Epstein [6] Ends. Topology of 3-manifolds, Prentice-Hall, Inc., Englewood Cliffs, N. J., (1962), 110-117. MR158380
- T. Homma And S. Kinoshita [7] On a topological characterization of the dilatation in E3. Osaka Math. J.6 (1954), 135-144. Zbl0055.42202MR63671
- W.C. Hsiang And J.L. Shaneson [8] Fake tori, the annulus conjecture, and the conjectures of Kirby. Proc. National Acad. Sci. U.S.A.62 (1969), 687-691. Zbl0174.26404MR270378
- L.S. Husch AND T.M. Price [9] Finding a boundary for a 3-manifold: Ann. of Math. (2) 91 (1970), 223-235. Zbl0169.55302MR264678
- B.V. Kerékjártó [10] Topologische Characterisierungen der linearen Abbildungen. Acta Litt. ac. Sci. Szeged6 (1934), 235-262. Zbl0008.37202JFM60.0519.02
- S. Kinoshita [11] On quasi-translations in 3-space. Fund. Math.56 (1964), 69-79. Zbl0123.16802MR171271
- S. Kinoshita [12] Notes on covering transformation groups. Proc. Amer. Soc.19 [1968), 421-424. Zbl0157.53704MR222871
- R C. KIRBY [13] Stable homeomorphisms and the annulus conjecture. Ann. Math.89 (1969), 575-582. Zbl0176.22004MR242165
- B. Mazur [14] A note on some contractible 4-manifolds. Ann. of Math. (2) 73 (1961), 221-228. Zbl0127.13604MR125574
- D.R. McMillan, Jr. [15] Cartesian products of contractible open manifolds. Bull. Amer. Math. Soc.67 (1961) 510-514. Zbl0116.40802MR131280
- V. Poénaru [16] Les decompositions de 1'hypercube en produit topologique. Bull. Soc. Math. France88 (1960), 113-129. Zbl0135.41704MR125572
- L.C. Siebenmann [17] On detecting Euclidean space homotopically among topological manifolds. Inventiones math.6 (1968), 245-261. Zbl0169.55201MR238325
- L.C. Siebenmann [18] On detecting open collars. Trans. Amer. Math. Soc.142 (1969), 201-227. Zbl0195.53802MR246301
- L.C. Siebenmann [19] The obstruction to finding a boundary for an open manifold of dimension greater than five. Thesis (1965) Princeton University.
- C.D. Sikkema, S. Kinoshita AND S.J. Lomonaco, JR. [20] Uncountably many quasi-translations of S3. (to appear).
- E. Spanier [21 ] Algebraic Topology. Mc-Graw-Hill Book Co., New York (1966). Zbl0145.43303
- E. Sperner [22] Ueber die fixpunktfreien Abbildungen der Ebene. Abh. Math. Sem. Hamburg10 (1934), 1-47. Zbl0009.18305JFM60.0518.02
- J.R. Stallings [23] On infinite processes leading to differentiability in the complement of a point. Differential and Combinatorial Topology. Princeton University Press, Princeton, New Jersey (1965), 245-254. Zbl0136.44302MR180983
- H. Terasaka [24] On quasi-translations in En. Proc. Japan Acad.30 (1954), 80-84. Zbl0057.15604MR63660
- J.H.C. Whitehead [25] A certain open manifold whose group is unity. Quart. J. Math. Oxford Ser. (2) 6 (1935), 364-366. Zbl0013.08103JFM61.0607.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.