Infinite terms and a system of natural deduction

Per Martin-Löf

Compositio Mathematica (1972)

  • Volume: 24, Issue: 1, page 93-103
  • ISSN: 0010-437X

How to cite

top

Martin-Löf, Per. "Infinite terms and a system of natural deduction." Compositio Mathematica 24.1 (1972): 93-103. <http://eudml.org/doc/89115>.

@article{Martin1972,
author = {Martin-Löf, Per},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {93-103},
publisher = {Wolters-Noordhoff Publishing},
title = {Infinite terms and a system of natural deduction},
url = {http://eudml.org/doc/89115},
volume = {24},
year = {1972},
}

TY - JOUR
AU - Martin-Löf, Per
TI - Infinite terms and a system of natural deduction
JO - Compositio Mathematica
PY - 1972
PB - Wolters-Noordhoff Publishing
VL - 24
IS - 1
SP - 93
EP - 103
LA - eng
UR - http://eudml.org/doc/89115
ER -

References

top
  1. H.B. Curry AND R. FeysCombinatory logic, vol. I (North-Holland, Amsterdam) 1958. Zbl0175.27601MR94298
  2. G. GentzenUntersuchungen über das logische Schliessen, Math. Z. 39 (1934) 176-210, 405-431. Zbl0010.14601JFM60.0846.01
  3. W.A. HowardThe formulae-as-types notion of construction, privately circulated notes, 1969. 
  4. D. PrawitzNatural deduction (Almqvist & Wiksell, Stockholm) 1965. Zbl0173.00205MR193005
  5. W.W. TaitInfinitely long terms of transfinite type, Formal Systems and Recursive Functions, edited by J. N. Crossley and M. A. E. Dummet (North-Holland, Amsterdam), (1965) 176-185. Zbl0154.00504MR195727
  6. Normal derivability in classical logic, Lecture Notes in Mathematics (Springer-Verlag, Berlin), 72 (1968) 204-236. Zbl0206.00502
  7. O. VeblenContinuous increasing functions of finite and transfinite ordinals, Trans. Amer. Math. Soc.9 (1908) 280-292). Zbl39.0102.01MR1500814JFM39.0102.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.