A topological interpretation of second-order intuitionistic arithmetic
Compositio Mathematica (1973)
- Volume: 26, Issue: 3, page 261-275
- ISSN: 0010-437X
Access Full Article
topHow to cite
topMoschovakis, Joan Rand. "A topological interpretation of second-order intuitionistic arithmetic." Compositio Mathematica 26.3 (1973): 261-275. <http://eudml.org/doc/89167>.
@article{Moschovakis1973,
author = {Moschovakis, Joan Rand},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {261-275},
publisher = {Noordhoff International Publishing},
title = {A topological interpretation of second-order intuitionistic arithmetic},
url = {http://eudml.org/doc/89167},
volume = {26},
year = {1973},
}
TY - JOUR
AU - Moschovakis, Joan Rand
TI - A topological interpretation of second-order intuitionistic arithmetic
JO - Compositio Mathematica
PY - 1973
PB - Noordhoff International Publishing
VL - 26
IS - 3
SP - 261
EP - 275
LA - eng
UR - http://eudml.org/doc/89167
ER -
References
top- S.C. Kleene and R.E. Vesley [1] The Foundations of intuitionistic mathematics, Amsterdam (North-Holland), 1965. Zbl0133.24601MR176922
- G. Kreisel and A.S. Troelstra [2] Formal systems for some branches of intuitionistic analysis, Annals of mathematical logic, Vol. 1 (1970), pp. 229-387. Zbl0211.01101MR263609
- G. Kreisel [3] Informal rigour and completeness proofs, in Problems in the philosophy of mathematics, ed. I. LAKATOS, Amsterdam (North-Holland), 1967, pp. 138-171, with following discussion.
- J.R. Moschovakis [4] Disjunction, existence, and λ-definability in formalized intuitionistic analysis, Ph. D. Thesis, University of Wisconsin, 1965.
- J. Myhill [5] Formal systems of intuitionistic analysis I, in Logic, methodology and philosophy of science III, eds. B. van Rootselaar and J. F. Staal, Amsterdam (North-Holland), 1968, pp. 161-178. Zbl0202.00601MR252204
- H. Rasiowa and R. Sikorski [6] The mathematics of metamathematics, Warsaw, 1963. Zbl0122.24311MR163850
- D. Scott [7] Extending the topological interpretation to intuitionistic analysis, Compositio Mathematica20 (1968), pp. 194-210. Zbl0197.00201MR228331
- D. Scott [8] Extending the topological interpretation to intuitionistic analysis II, in Intuitionism and proof theory, eds. J. Myhill, A. Kino and R. Vesley, Amsterdam (North-Holland), 1970, pp. 235-255. Zbl0213.01203MR274260
- [9] A.S. TroelstraNotes on the intuitionistic theory of sequences (I), Indag. Math.31, No. 5 (1969). Zbl0188.31603MR258597
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.