# A topological interpretation of second-order intuitionistic arithmetic

Compositio Mathematica (1973)

- Volume: 26, Issue: 3, page 261-275
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topMoschovakis, Joan Rand. "A topological interpretation of second-order intuitionistic arithmetic." Compositio Mathematica 26.3 (1973): 261-275. <http://eudml.org/doc/89167>.

@article{Moschovakis1973,

author = {Moschovakis, Joan Rand},

journal = {Compositio Mathematica},

language = {eng},

number = {3},

pages = {261-275},

publisher = {Noordhoff International Publishing},

title = {A topological interpretation of second-order intuitionistic arithmetic},

url = {http://eudml.org/doc/89167},

volume = {26},

year = {1973},

}

TY - JOUR

AU - Moschovakis, Joan Rand

TI - A topological interpretation of second-order intuitionistic arithmetic

JO - Compositio Mathematica

PY - 1973

PB - Noordhoff International Publishing

VL - 26

IS - 3

SP - 261

EP - 275

LA - eng

UR - http://eudml.org/doc/89167

ER -

## References

top- S.C. Kleene and R.E. Vesley [1] The Foundations of intuitionistic mathematics, Amsterdam (North-Holland), 1965. Zbl0133.24601MR176922
- G. Kreisel and A.S. Troelstra [2] Formal systems for some branches of intuitionistic analysis, Annals of mathematical logic, Vol. 1 (1970), pp. 229-387. Zbl0211.01101MR263609
- G. Kreisel [3] Informal rigour and completeness proofs, in Problems in the philosophy of mathematics, ed. I. LAKATOS, Amsterdam (North-Holland), 1967, pp. 138-171, with following discussion.
- J.R. Moschovakis [4] Disjunction, existence, and λ-definability in formalized intuitionistic analysis, Ph. D. Thesis, University of Wisconsin, 1965.
- J. Myhill [5] Formal systems of intuitionistic analysis I, in Logic, methodology and philosophy of science III, eds. B. van Rootselaar and J. F. Staal, Amsterdam (North-Holland), 1968, pp. 161-178. Zbl0202.00601MR252204
- H. Rasiowa and R. Sikorski [6] The mathematics of metamathematics, Warsaw, 1963. Zbl0122.24311MR163850
- D. Scott [7] Extending the topological interpretation to intuitionistic analysis, Compositio Mathematica20 (1968), pp. 194-210. Zbl0197.00201MR228331
- D. Scott [8] Extending the topological interpretation to intuitionistic analysis II, in Intuitionism and proof theory, eds. J. Myhill, A. Kino and R. Vesley, Amsterdam (North-Holland), 1970, pp. 235-255. Zbl0213.01203MR274260
- [9] A.S. TroelstraNotes on the intuitionistic theory of sequences (I), Indag. Math.31, No. 5 (1969). Zbl0188.31603MR258597

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.