Reduction of the proof of the non-rationality of a non-singular cubic threefold to a result of mumford

J. P. Murre

Compositio Mathematica (1973)

  • Volume: 27, Issue: 1, page 63-82
  • ISSN: 0010-437X

How to cite

top

Murre, J. P.. "Reduction of the proof of the non-rationality of a non-singular cubic threefold to a result of mumford." Compositio Mathematica 27.1 (1973): 63-82. <http://eudml.org/doc/89180>.

@article{Murre1973,
author = {Murre, J. P.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {63-82},
publisher = {Noordhoff International Publishing},
title = {Reduction of the proof of the non-rationality of a non-singular cubic threefold to a result of mumford},
url = {http://eudml.org/doc/89180},
volume = {27},
year = {1973},
}

TY - JOUR
AU - Murre, J. P.
TI - Reduction of the proof of the non-rationality of a non-singular cubic threefold to a result of mumford
JO - Compositio Mathematica
PY - 1973
PB - Noordhoff International Publishing
VL - 27
IS - 1
SP - 63
EP - 82
LA - eng
UR - http://eudml.org/doc/89180
ER -

References

top
  1. [1] S.S. Abhyankar: Resolution of singularities of embedded algebraic surfaces. Academic Press, 1966. Zbl0147.20504MR217069
  2. [2] M. Artin: Faisceaux constructibles. Cohomologie d'une courbe algébrique. Expose IX in S.G.A. 4, I.H.E.S. (1963/64). Zbl0262.14002
  3. [3] W.L. Chow: On equivalence classes of cycles in an algebraic variety. Annals of Math.64 (1956), 450-479. Zbl0073.37304MR82173
  4. [4] C.H. Clemens and P.A. Griffiths: The intermediate Jacobian of the cubic threefold. Annals of Math.95 (1972), 281-356. Zbl0214.48302MR302652
  5. [5] J.P. Jouanolou: Cohomologie de quelques schémas classiques et théorie cohomologique des classes de Chern. Expose VII in S.G.A. 5, I.H.E.S. (1964/65). Zbl0352.14004
  6. [6] N. Katz: Etude cohomologique des pinceaux de Lefschetz, Expose XVIII in S.G.A.7, I.H.E.S. Zbl0284.14007
  7. [7] S.L. Kleiman: Algebraic cycles and the Weil conjectures. Dix exposés sur la cohomologie des schémas, North-Holland/ Masson & Cie, 1968. Zbl0198.25902MR292838
  8. [8] S. Lang: Abelian Varieties. New York. Interscience, 1959. Zbl0098.13201MR106225
  9. [9] T. Matsusaka: On algebraic families of positive divisors and their associated varieties on a projective variety. Journal of the Math. Soc. Japan, 5 (1953), 115-136. Zbl0051.37901MR59027
  10. [10] D. Mumford: Abelian Varieties. Bombay. Tata Institute of Fund. Research and Oxford University Press, 1970. Zbl0583.14015MR282985
  11. [11] D. Mumford: Prym Varieties (to be published). Zbl0299.14018
  12. [12] J.P. Murre: Algebraic equivalence modulo rational equivalence on a cubic threefold. Comp. Math.25 (1972), 161-206. Zbl0242.14002MR352088
  13. [13] P. Samuel: Rélations d'équivalence en géométrie algébrique. Proc. Internat. Congress Math., Edinburgh1958, 470-487. Zbl0119.36901MR116010
  14. [14] J.L. Verdier: A duality theorem in the étale cohomology of schemes. Proc. Conf. on Local fields (Driebergen 1966), Berlin, Springer-Verlag1967, 184-198. Zbl0184.24402MR230732
  15. [15] O. Zariski: Introduction to the problem of minimal models in the theory of algebraic surfaces. Publ. of the Math. Soc. Japan4, 1958. Zbl0093.33904MR97403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.