The point-outerthickness of complete -partite graphs
Compositio Mathematica (1974)
- Volume: 29, Issue: 1, page 55-61
- ISSN: 0010-437X
Access Full Article
topHow to cite
topMitchem, John. "The point-outerthickness of complete $n$-partite graphs." Compositio Mathematica 29.1 (1974): 55-61. <http://eudml.org/doc/89223>.
@article{Mitchem1974,
author = {Mitchem, John},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {55-61},
publisher = {Noordhoff International Publishing},
title = {The point-outerthickness of complete $n$-partite graphs},
url = {http://eudml.org/doc/89223},
volume = {29},
year = {1974},
}
TY - JOUR
AU - Mitchem, John
TI - The point-outerthickness of complete $n$-partite graphs
JO - Compositio Mathematica
PY - 1974
PB - Noordhoff International Publishing
VL - 29
IS - 1
SP - 55
EP - 61
LA - eng
UR - http://eudml.org/doc/89223
ER -
References
top- [1] L.W. Beineke: Complete bipartite graphs: decomposition into planar subgraphs, A Seminar in Graph Theory (F. Harary, ed.) Holt, Rinehart and Winston, New York, 1967, 42-53. Zbl0207.22901MR215745
- [2] L.W. Beineke, F. Harary and J.W. Moon: On the thickness of the complete bipartite graph. Proc. Cambridge Philos. Soc., 60 (1964) 1-5. Zbl0121.18402MR158388
- [3] G. Chartrand, D. Geller and S. Hedetniemi: Graphs with forbidden subgraphs. J. Combinatorial Theory, 10 (1971) 12-41. Zbl0223.05101MR285427
- [4] G. Chartrand and H.V. Kronk: The point-arboricity of planar graphs. J. London Math. Soc., 44 (1969) 612-616. Zbl0175.50505MR239996
- [5] G. Chartrand, H.V. Kronk and C.E. Wall: The point-arboriticy of a graph. Israel J. Math., 6 (1968) 169-175. Zbl0164.54201MR236049
- [6] F. Harary: Graph Theory. Addison-Wesley, Reading, Mass.1969, 120-121. Zbl0182.57702MR256911
- [7] J. Mayer: Decomposition de K16 en trois graphes planaires. J. Combinatorial Theory (B), 13 (1972) 71. Zbl0238.05103
- [8] J. Mitchem: Uniquely k-arborable graphs. Israel J. Math., 10 (1971) 17-25. Zbl0224.05105MR300921
- [9] St J.A. Nash-Williams: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36 (1961) 445-450. Zbl0102.38805MR133253
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.