Hecke theory for

H. Jacquet; J. A. Shalika

Compositio Mathematica (1974)

  • Volume: 29, Issue: 1, page 75-87
  • ISSN: 0010-437X

How to cite

top

Jacquet, H., and Shalika, J. A.. "Hecke theory for $GL(3)$." Compositio Mathematica 29.1 (1974): 75-87. <http://eudml.org/doc/89226>.

@article{Jacquet1974,
author = {Jacquet, H., Shalika, J. A.},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {75-87},
publisher = {Noordhoff International Publishing},
title = {Hecke theory for $GL(3)$},
url = {http://eudml.org/doc/89226},
volume = {29},
year = {1974},
}

TY - JOUR
AU - Jacquet, H.
AU - Shalika, J. A.
TI - Hecke theory for $GL(3)$
JO - Compositio Mathematica
PY - 1974
PB - Noordhoff International Publishing
VL - 29
IS - 1
SP - 75
EP - 87
LA - eng
UR - http://eudml.org/doc/89226
ER -

References

top
  1. [1 ] I.M. Gelfand and D.A. Kajdan: Representations of GL(n, k) where k is a local field. Institute for Applied Mathematics, No. 942, 1971. 
  2. [2] H. Jacquet and R.P. Langlands: Automorphic forms on GL(2). Lecture Notes in Math., No. 114. Springer-Verlag, Berlin and New York, 1970. Zbl0236.12010MR401654
  3. [3] H. Jacquet: Automorphic Forms on GL(2), II. Lecture Notes in Math., No. 278. Springer-Verlag, Berlin and New York, 1972. Zbl0243.12005MR562503
  4. [4] H. Jacquet and R. Godement: Zeta Functions of Simple Algebras. Lecture Notes in Math., No. 260. Springer-Verlag, Berlin and New York, 1972. Zbl0244.12011MR342495
  5. [5] F. Rodier: Whittaker models for admissible representations of reductive p-adic split groups. Harmonic Analysis on Homogeneous Spaces, Proc. of Symp. in Pure Math., Vol. XXVI, A.M.S., Providence, R.I., 1973. Zbl0287.22016MR354942
  6. [6] J.A. Shalika: The multiplicity one theorem for GLn. Ann. of Math., Vol. 100, No. 1, 1974. Zbl0316.12010MR348047

NotesEmbed ?

top

You must be logged in to post comments.