Some finiteness properties of the fundamental group of a smooth variety
Compositio Mathematica (1975)
- Volume: 31, Issue: 3, page 303-308
- ISSN: 0010-437X
Access Full Article
topHow to cite
topAnderson, Michael P.. "Some finiteness properties of the fundamental group of a smooth variety." Compositio Mathematica 31.3 (1975): 303-308. <http://eudml.org/doc/89276>.
@article{Anderson1975,
author = {Anderson, Michael P.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {303-308},
publisher = {Noordhoff International Publishing},
title = {Some finiteness properties of the fundamental group of a smooth variety},
url = {http://eudml.org/doc/89276},
volume = {31},
year = {1975},
}
TY - JOUR
AU - Anderson, Michael P.
TI - Some finiteness properties of the fundamental group of a smooth variety
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 31
IS - 3
SP - 303
EP - 308
LA - eng
UR - http://eudml.org/doc/89276
ER -
References
top- [1] S. Abhyankar: Resolution of Singularities of Embedded Algebraic Surfaces. Academic Press, New York, 1966. Zbl0147.20504MR217069
- [2] Michae L.P. Anderson: Profinite Groups and the Topological Invariants of Algebraic Varieties. Princeton Ph.D. thesis, 1974.
- [3] Michael P. Anderson: EXACTNESS PROPERTIES OF PROFINITE COMPLETION FUNCTORS. Topology13 (1974) 229-239. Zbl0324.20041MR354882
- [4] M. Artin, A. Grothendieck, J.L. Verdier: Theorie des Topos et Cohomologie Etale des Schemas. Lecture Notes in Mathematics305 (1973). Zbl0245.00002
- [5] Wout De Bruin: Une forme algebrique du theoreme de Zariski pour Π1. C. R. Acad. Sci. Paris Ser.A-B272 (1971) A769-A771. Zbl0215.08102
- [6] E.M. Friedlander: The Etale Homotopy Theory of a Geometric Fibration. Manuscripta Mathematica10 (1973) 209-244. Zbl0263.14004MR352099
- [7] A. Grothendieck et al.: Revetements Etales et Groupe Fondamental. Lecture Notes in Mathematics224 (1971). Zbl0234.14002MR354651
- [8] A. Grothendieck et al.: Groupes de Monodromie en Geometrie Algebrique. Lecture Notes in Mathematics288 (1972). Zbl0237.00013
- [9] Herbert Popp: Ein Satz vom Lefschetzschen Typ Uber die Fundamentalgruppe quasi-projectiver Schemata. Math. Z.116 (1970) 143-152. Zbl0199.55801MR291180
- [10] M. Raynaud: Theoreme de Lefschetz en Cohomologie des Faisceux coherents et en cohomologie etale. Ann. E. N. S.4 (1974) 29-52. Zbl0317.14006MR379503
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.