Some finiteness properties of the fundamental group of a smooth variety

Michael P. Anderson

Compositio Mathematica (1975)

  • Volume: 31, Issue: 3, page 303-308
  • ISSN: 0010-437X

How to cite


Anderson, Michael P.. "Some finiteness properties of the fundamental group of a smooth variety." Compositio Mathematica 31.3 (1975): 303-308. <>.

author = {Anderson, Michael P.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {303-308},
publisher = {Noordhoff International Publishing},
title = {Some finiteness properties of the fundamental group of a smooth variety},
url = {},
volume = {31},
year = {1975},

AU - Anderson, Michael P.
TI - Some finiteness properties of the fundamental group of a smooth variety
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 31
IS - 3
SP - 303
EP - 308
LA - eng
UR -
ER -


  1. [1] S. Abhyankar: Resolution of Singularities of Embedded Algebraic Surfaces. Academic Press, New York, 1966. Zbl0147.20504MR217069
  2. [2] Michae L.P. Anderson: Profinite Groups and the Topological Invariants of Algebraic Varieties. Princeton Ph.D. thesis, 1974. 
  3. [3] Michael P. Anderson: EXACTNESS PROPERTIES OF PROFINITE COMPLETION FUNCTORS. Topology13 (1974) 229-239. Zbl0324.20041MR354882
  4. [4] M. Artin, A. Grothendieck, J.L. Verdier: Theorie des Topos et Cohomologie Etale des Schemas. Lecture Notes in Mathematics305 (1973). Zbl0245.00002
  5. [5] Wout De Bruin: Une forme algebrique du theoreme de Zariski pour Π1. C. R. Acad. Sci. Paris Ser.A-B272 (1971) A769-A771. Zbl0215.08102
  6. [6] E.M. Friedlander: The Etale Homotopy Theory of a Geometric Fibration. Manuscripta Mathematica10 (1973) 209-244. Zbl0263.14004MR352099
  7. [7] A. Grothendieck et al.: Revetements Etales et Groupe Fondamental. Lecture Notes in Mathematics224 (1971). Zbl0234.14002MR354651
  8. [8] A. Grothendieck et al.: Groupes de Monodromie en Geometrie Algebrique. Lecture Notes in Mathematics288 (1972). Zbl0237.00013
  9. [9] Herbert Popp: Ein Satz vom Lefschetzschen Typ Uber die Fundamentalgruppe quasi-projectiver Schemata. Math. Z.116 (1970) 143-152. Zbl0199.55801MR291180
  10. [10] M. Raynaud: Theoreme de Lefschetz en Cohomologie des Faisceux coherents et en cohomologie etale. Ann. E. N. S.4 (1974) 29-52. Zbl0317.14006MR379503

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.