Les voisinages réguliers ouverts : critères homotopiques d'identification
Compositio Mathematica (1976)
- Volume: 32, Issue: 2, page 133-156
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGuillou, L., and Hähl, H.. "Les voisinages réguliers ouverts : critères homotopiques d'identification." Compositio Mathematica 32.2 (1976): 133-156. <http://eudml.org/doc/89285>.
@article{Guillou1976,
author = {Guillou, L., Hähl, H.},
journal = {Compositio Mathematica},
language = {fre},
number = {2},
pages = {133-156},
publisher = {Noordhoff International Publishing},
title = {Les voisinages réguliers ouverts : critères homotopiques d'identification},
url = {http://eudml.org/doc/89285},
volume = {32},
year = {1976},
}
TY - JOUR
AU - Guillou, L.
AU - Hähl, H.
TI - Les voisinages réguliers ouverts : critères homotopiques d'identification
JO - Compositio Mathematica
PY - 1976
PB - Noordhoff International Publishing
VL - 32
IS - 2
SP - 133
EP - 156
LA - fre
UR - http://eudml.org/doc/89285
ER -
References
top- [1] K. Borsuk: Theory of retracts. Monografie Matematyczne tom 44, Polish Scientific publishers, Warszawa (1967). Zbl0153.52905MR216473
- [2] K. Borsuk: Concerning homotopy properties of compacta. Fund. Math.62 (1968) 223-254. Zbl0159.24603MR229237
- [3] E. Brown: Unknotting in M2× I. Trans. Amer. Math. Soc.123 (1966) 480-505. Zbl0151.32903MR198482
- [4] E. Connel: A topological h-cobordism for n ≧ 5. Illinois J. of Math. Il (1967) 300-309. Zbl0146.45201
- [5] R. Fox: On shape. Fund. Math.74 (1972) 47-71 et idem 75 (1972) 85. Zbl0232.55023MR296914
- [6] M. Goldman: An algebraic classification of non compact 2-manifolds. Trans. Amer. Math. Soc.156 (1971) 241-258. Zbl0232.57007MR275436
- [7] S. Hu: Theory of retracts. Wayne State Univ. Press, Detroit (1965). Zbl0145.43003MR181977
- [8] L. Hush and T. Price: Finding a boundary for a 3-manifold. Ann. of Math. (2) 91 (1970) 223-235 et idem (2) 93 (1971) 486-488. Zbl0169.55302MR264678
- [9] S. Ichiraku and M. Kato: On higher-dimensional strings of codimension two. Quart. J. of Math.23 (1972) 239-248. Zbl0242.57008MR317334
- [10] M. Mardesic and J. Segal: Shape of compacta and ANR-systems. Fund. Math.72 (1971) 41-59 et 61-68. Zbl0222.55018MR298634
- [11] J. Milnor: On space having the homotopy type of a CW complex. Trans. Amer. Math. Soc.90 (1959) 272-280. Zbl0084.39002MR100267
- [12] M. Newman: The engulfing theorem for topological manifolds. Ann. of Math. (2) 84 (1966) 555-571. Zbl0166.19801MR203708
- [13] L. Siebenmann: The obstruction to finding a boundary for an open manifold of dimension ≧ 5. Thesis, Princeton (1965).
- [14] L. Siebenmann: Nouvelle version de [13] (à paraître).
- [15] L. Siebenmann: On detecting open collars. Trans. Amer. Math. Soc.142 (1969) 201-227. Zbl0195.53802MR246301
- [16] L. Siebenmann: On detecting euclidean space homotopically among topological manifolds. Inventiones Math.6 (1968) 245-261. Zbl0169.55201MR238325
- [17] L. Siebenmann: Deformation of homeomorphisms on stratified sets. Comment. Math. Helv.47 (1972) 123-163. Zbl0252.57012MR319207
- [18] L. Siebenmann: Regular open neighbourhoods. General Topology and its applications3 (1973) 51-61. Zbl0276.57003MR370604
- [19] L. Siebenmann, L. Guillou, H. Hähl: Les voisinages ouverts réguliers. Ann. Ecole Normale Sup. (4) 6 (1973) 253-293. Zbl0294.57009MR331399
- [20] L. Siebenmann, L. Guillou, H. Hähl: Les voisinages ouverts réguliers: Critères homotopiques d'existence. Ann. Ecole Normale Sup. (4) 7 (1974) 431-462. Zbl0318.57011MR362324
- [21] E. Spanier: Algebraic Topology. McGraw-Hill Inc. (1966). Zbl0145.43303MR210112
- [22] J. Stallings: The piecewise linear structure of euclidean space, Proc. Camb. Phil. Soc.58 (1962) 481-488. Zbl0107.40203MR149457
- [23] J. Stallings: On topologically unknotted spheres. Ann. of Math. (2) 77 (1963) 490-503. Zbl0121.18202MR149458
- [24] J. Stallings: On infinite processes leading to differentiability in the complement of a point, pp. 245-254 in Differential and Combinatorial Topology : a symposium in honor of Marston Morse. Princeton Univ. Press, N.J. (1965). Zbl0136.44302MR180983
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.