Decomposability of evaluation fibrations and the brace product operation of James

Vagn Lundsgaard Hansen

Compositio Mathematica (1977)

  • Volume: 35, Issue: 1, page 83-89
  • ISSN: 0010-437X

How to cite

top

Hansen, Vagn Lundsgaard. "Decomposability of evaluation fibrations and the brace product operation of James." Compositio Mathematica 35.1 (1977): 83-89. <http://eudml.org/doc/89337>.

@article{Hansen1977,
author = {Hansen, Vagn Lundsgaard},
journal = {Compositio Mathematica},
language = {eng},
number = {1},
pages = {83-89},
publisher = {Noordhoff International Publishing},
title = {Decomposability of evaluation fibrations and the brace product operation of James},
url = {http://eudml.org/doc/89337},
volume = {35},
year = {1977},
}

TY - JOUR
AU - Hansen, Vagn Lundsgaard
TI - Decomposability of evaluation fibrations and the brace product operation of James
JO - Compositio Mathematica
PY - 1977
PB - Noordhoff International Publishing
VL - 35
IS - 1
SP - 83
EP - 89
LA - eng
UR - http://eudml.org/doc/89337
ER -

References

top
  1. [1] M. Abe: Über die stetigen Abbildungen der n-Sphäre in einer metrischen Raum. Jap. J. Math.16 (1940) 169-176. Zbl0023.38205MR2535JFM66.0956.04
  2. [2] J.F. Adams: On the non-existence of elements of Hopf invariant one. Ann. Math.72 (1960) 20-104. Zbl0096.17404MR141119
  3. [3] A. Dold: Partitions of unity in the theory of fibrations. Ann. Math.78 (1963) 223-255. Zbl0203.25402MR155330
  4. [4] H. Federer: A study of function spaces by spectral sequences. Trans. Amer. Math. Soc.82 (1956) 340-367. Zbl0071.16602MR79265
  5. [5] V.L. Hansen: Equivalence of evaluation fibrations. Invent. Math.23 (1974) 163-171. Zbl0281.55002MR368000
  6. [6] I.M. James: On the space of maps of one fibre space into another. Comp. Math.23 (1971) 317-328. Zbl0218.55019MR301737
  7. [7] I.M. James: On the decomposability of fibre spaces. In The Steenrod algebra and its applications. Springer Lecture Notes in Mathematics168. (1970) 125-134. Zbl0214.50103MR278308
  8. [8] L. Kristensen and I. Madsen: Note on Whitehead products in spheres. Math. Scand.21 (1967) 301-314. Zbl0176.21002MR245003
  9. [9] M. Mahowald: Some Whitehead products in Sn. Topology4 (1965) 17-26. Zbl0142.40704MR178467

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.