Locally convex spaces for which Λ ( E ) = Λ [ E ] and the Dvoretsky-Rogers theorem

N. de Grande-de Kimpe

Compositio Mathematica (1977)

  • Volume: 35, Issue: 2, page 139-145
  • ISSN: 0010-437X

How to cite


de Grande-de Kimpe, N.. "Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem." Compositio Mathematica 35.2 (1977): 139-145. <http://eudml.org/doc/89343>.

author = {de Grande-de Kimpe, N.},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {139-145},
publisher = {Noordhoff International Publishing},
title = {Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem},
url = {http://eudml.org/doc/89343},
volume = {35},
year = {1977},

AU - de Grande-de Kimpe, N.
TI - Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem
JO - Compositio Mathematica
PY - 1977
PB - Noordhoff International Publishing
VL - 35
IS - 2
SP - 139
EP - 145
LA - eng
UR - http://eudml.org/doc/89343
ER -


  1. [1] N. De Grande-De Kimpe: Generalized sequence spaces. Bull. Soc. Math. Belg.XXIII (1971) 123-166. Zbl0232.46017MR310590
  2. [2] N. De Grange-De Kimpe: Operator theory for bornological spaces. Bull. Soc. Math. Belg.XXVI, (1974) 3-23. Zbl0298.47015MR477674
  3. [3] N. De Grange-De Kimpe: Criteria for nuclearity in terms of generalized sequence spaces. To appear in Archiv der Mathematik. Zbl0359.46011
  4. [4] ED. Dubinsky and M.S. Ramanujan: Inclusion theorems for absolutely A-summing maps. Math. Ann.192 (1971) 177-190. Zbl0202.13202MR293294
  5. [5] A. Grothendieck: Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretsky-Rogers. Boletin Soc. Math. Sao Paulo, 8 (1956). Zbl1098.46506MR94683
  6. [6] G. Kothe: Topologische lineare Räume. Springer Verlag (1960). Zbl0093.11901MR130551
  7. [7] A. Pietsch: Verallgemeinerte volkommene Folgenräume. Akademie Verlag (1962). Zbl0105.30701MR157216
  8. [8] A. Pietsch: Nukleare lokalkonvexe Räume. Akademie Verlag (1965). Zbl0184.14602MR181888
  9. [9] A. Pietsch: Absolut p-summierende Abbildungen in normierte Räume. Studia Math.28 (1967) 333-353. Zbl0156.37903MR216328
  10. [10] R.C. Rosier: Dual spaces of certain vector sequence spaces. Pacific J. Math.46(2) (1973) 487-501. Zbl0263.46009MR328544
  11. [11] R.C. Rosier: Vector sequence spaces and the Dvoretsky-Rogers theorem. (To appear). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.