On the essential height of homotopy trees with finite fundamental group

Micheal N. Dyer

Compositio Mathematica (1978)

  • Volume: 36, Issue: 2, page 209-224
  • ISSN: 0010-437X

How to cite

top

Dyer, Micheal N.. "On the essential height of homotopy trees with finite fundamental group." Compositio Mathematica 36.2 (1978): 209-224. <http://eudml.org/doc/89367>.

@article{Dyer1978,
author = {Dyer, Micheal N.},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {209-224},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {On the essential height of homotopy trees with finite fundamental group},
url = {http://eudml.org/doc/89367},
volume = {36},
year = {1978},
}

TY - JOUR
AU - Dyer, Micheal N.
TI - On the essential height of homotopy trees with finite fundamental group
JO - Compositio Mathematica
PY - 1978
PB - Sijthoff et Noordhoff International Publishers
VL - 36
IS - 2
SP - 209
EP - 224
LA - eng
UR - http://eudml.org/doc/89367
ER -

References

top
  1. [1] W. Cockcroft and R.M.F. Moss: On the two-dimensional realisability of chain complexes. Jour. London Math. Soc., 11 (1975) 257-262. Zbl0312.55027MR380811
  2. [2] M.N. Dyer, On the 2-realizability of 2-types, Trans. Amer. Math. Soc., vol. 204 (1975), 229-243. Zbl0341.55010MR380783
  3. [3] M.N. Dyer, Homotopy classification of (π, m )-complexes, Jour. Pure and Applied Algebra, 7 (1976), 249-282. Zbl0351.55007
  4. [4] M.N. Dyer, Homotopy trees: essential height and roots, Ill. Jour. Math., 20 (1976), 306-313. Zbl0336.55013MR405433
  5. [5] M.N. Dyer, Non-minimal roots in homotopy trees, preprint. 
  6. [6] S. Maclane, Homology, Springer-Verlag, Berlin, 1963. Zbl0133.26502MR156879
  7. [7] S. Maclane, and J.H.C. Whitehead, On the 3-type of a complex, Proc. Nat. Acad. Sci.U.S.A., vol. 36 (1950), 41-48. Zbl0035.39001MR33519
  8. [8] W. Metzler, Uber den Homotopietyp zweidimensionaler CW-Komplexe und Elementartransformationen bei Darstellungen von Gruppen durch Erzeugende und definierende Relationen, to appear in the Journal fur die Reine und Angewandte Mathematik. Zbl0325.57003MR440527
  9. [9] A.J. Sieradski, A semigroup of simple homotopy types. Math. Zeit., 153 (1977), 135-148. Zbl0358.57006MR438321
  10. [10] R.G. Swan, Periodic resolutions for finite groups, Ann. Math.72 (1960), 267-291. Zbl0096.01701MR124895
  11. [11] R.G. Swan, Minimal resolutions for finite groups, Topology4 (1965), 193-208. Zbl0146.04002MR179234
  12. [12] R.G. Swan, K-theory of finite groups and orders, Lecture notes in mathematics, 149 (Springer-Verlag, Berlin, 1970). Zbl0205.32105MR308195
  13. [13] R.G. Swan, Projective modules over group rings and maximal orders, Ann. Math., 76 (1962), 55-61. Zbl0112.02702MR139635
  14. [14] C.T.C. Wall, Finiteness conditions for CW-complexes I, Ann. Math., 81 (1965), 56-69. Zbl0152.21902MR171284
  15. [15] J.S. Williams, Free presentations and relation modules of finite groups, Jour. Pure and Applied Algebra, 3 (1973), 203-217. Zbl0268.20025MR344351

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.