On the essential height of homotopy trees with finite fundamental group
Compositio Mathematica (1978)
- Volume: 36, Issue: 2, page 209-224
- ISSN: 0010-437X
Access Full Article
topHow to cite
topDyer, Micheal N.. "On the essential height of homotopy trees with finite fundamental group." Compositio Mathematica 36.2 (1978): 209-224. <http://eudml.org/doc/89367>.
@article{Dyer1978,
author = {Dyer, Micheal N.},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {209-224},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {On the essential height of homotopy trees with finite fundamental group},
url = {http://eudml.org/doc/89367},
volume = {36},
year = {1978},
}
TY - JOUR
AU - Dyer, Micheal N.
TI - On the essential height of homotopy trees with finite fundamental group
JO - Compositio Mathematica
PY - 1978
PB - Sijthoff et Noordhoff International Publishers
VL - 36
IS - 2
SP - 209
EP - 224
LA - eng
UR - http://eudml.org/doc/89367
ER -
References
top- [1] W. Cockcroft and R.M.F. Moss: On the two-dimensional realisability of chain complexes. Jour. London Math. Soc., 11 (1975) 257-262. Zbl0312.55027MR380811
- [2] M.N. Dyer, On the 2-realizability of 2-types, Trans. Amer. Math. Soc., vol. 204 (1975), 229-243. Zbl0341.55010MR380783
- [3] M.N. Dyer, Homotopy classification of (π, m )-complexes, Jour. Pure and Applied Algebra, 7 (1976), 249-282. Zbl0351.55007
- [4] M.N. Dyer, Homotopy trees: essential height and roots, Ill. Jour. Math., 20 (1976), 306-313. Zbl0336.55013MR405433
- [5] M.N. Dyer, Non-minimal roots in homotopy trees, preprint.
- [6] S. Maclane, Homology, Springer-Verlag, Berlin, 1963. Zbl0133.26502MR156879
- [7] S. Maclane, and J.H.C. Whitehead, On the 3-type of a complex, Proc. Nat. Acad. Sci.U.S.A., vol. 36 (1950), 41-48. Zbl0035.39001MR33519
- [8] W. Metzler, Uber den Homotopietyp zweidimensionaler CW-Komplexe und Elementartransformationen bei Darstellungen von Gruppen durch Erzeugende und definierende Relationen, to appear in the Journal fur die Reine und Angewandte Mathematik. Zbl0325.57003MR440527
- [9] A.J. Sieradski, A semigroup of simple homotopy types. Math. Zeit., 153 (1977), 135-148. Zbl0358.57006MR438321
- [10] R.G. Swan, Periodic resolutions for finite groups, Ann. Math.72 (1960), 267-291. Zbl0096.01701MR124895
- [11] R.G. Swan, Minimal resolutions for finite groups, Topology4 (1965), 193-208. Zbl0146.04002MR179234
- [12] R.G. Swan, K-theory of finite groups and orders, Lecture notes in mathematics, 149 (Springer-Verlag, Berlin, 1970). Zbl0205.32105MR308195
- [13] R.G. Swan, Projective modules over group rings and maximal orders, Ann. Math., 76 (1962), 55-61. Zbl0112.02702MR139635
- [14] C.T.C. Wall, Finiteness conditions for CW-complexes I, Ann. Math., 81 (1965), 56-69. Zbl0152.21902MR171284
- [15] J.S. Williams, Free presentations and relation modules of finite groups, Jour. Pure and Applied Algebra, 3 (1973), 203-217. Zbl0268.20025MR344351
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.