A class of diophantine equations connected with certain elliptic curves over Q ( - 13 )

R. J. Stroeker

Compositio Mathematica (1979)

  • Volume: 38, Issue: 3, page 329-346
  • ISSN: 0010-437X

How to cite

top

Stroeker, R. J.. "A class of diophantine equations connected with certain elliptic curves over $Q(\sqrt{-13})$." Compositio Mathematica 38.3 (1979): 329-346. <http://eudml.org/doc/89408>.

@article{Stroeker1979,
author = {Stroeker, R. J.},
journal = {Compositio Mathematica},
keywords = {Elliptic Curves with Good Reduction; Imaginary Quadratic Number Fields; Diophantine Equations; Bad Reduction},
language = {eng},
number = {3},
pages = {329-346},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {A class of diophantine equations connected with certain elliptic curves over $Q(\sqrt\{-13\})$},
url = {http://eudml.org/doc/89408},
volume = {38},
year = {1979},
}

TY - JOUR
AU - Stroeker, R. J.
TI - A class of diophantine equations connected with certain elliptic curves over $Q(\sqrt{-13})$
JO - Compositio Mathematica
PY - 1979
PB - Sijthoff et Noordhoff International Publishers
VL - 38
IS - 3
SP - 329
EP - 346
LA - eng
KW - Elliptic Curves with Good Reduction; Imaginary Quadratic Number Fields; Diophantine Equations; Bad Reduction
UR - http://eudml.org/doc/89408
ER -

References

top
  1. [1] Z.I. Borevich and I.R. Shafarevich: Number Theory. Pure and Appl. Maths. Ser.20. Acad. Press, New York and London, 1966. Zbl0145.04902MR195803
  2. [2] B. Delaunay: Ueber die Darstellung der Zahlen durch die binäre kubische Formen mit negativer Diskriminante. Math. Zeitschr.31 (1930) 1-26. MR1545095JFM55.0722.02
  3. [3] P. Déligne: Courbes elliptiques: Formulaire (d'après J. Tate). In: Modular functions of one variable IV. Lecture Notes in Maths.476. Springer, Berlin-Heidelberg -New York, 1975, 53-73. MR387292
  4. [4] L.J. Mordell: Diophantine Equations. Pure and Appl. Maths. Ser.30. Acad. Press, New York and London, 1969. Zbl0188.34503MR249355
  5. [5] T. Nagell: Darstellungen ganzer Zahlen durch binäre kubische Formen mit negativer Diskriminante. Math. Zeitschr.28 (1928) 10-29. Zbl54.0174.02MR1544935JFM54.0174.02
  6. [6] C.L. Siegel: Ueber einige Anwendungen Diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys.-Math. Kl.1929 nr. 1. JFM56.0180.05
  7. [7] R.J. Stroeker: Elliptic curves defined over imaginary quadratic number fields. Doct. thesis, Univ. Amsterdam, 1975. Zbl0342.14014MR450290
  8. [8] J.T. Tate: Letter to J.-P. Serre, dated July 24th 1971. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.