Separability of analytic images of some Banach spaces
Compositio Mathematica (1979)
- Volume: 38, Issue: 3, page 347-354
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] S. Dineen: Growth properties of pseudoconvex domains and domains of holomorphy in locally convex linear topological vector spaces. Math. Ann.226 (1977) 229-236. Zbl0356.46047MR492395
- [2] L. Drewnowski: An extension of a theorem of Rosenthal on operators acting from 1∞(Γ). Studia Math.57 (1976) 209-215. Zbl0351.46008
- [3] L. Drewnowski: Un théoreme sur les opérateurs de 1∞(Γ). C. R. Acad. Sc. Paris, Ser A, 281 (1975) 967-969. Zbl0323.46014
- [4] J. Globevnik: On the range of analytic functions into a Banach space. Infinite Dim. Holomorphy Appl. (Matos Ed.) North Holland Math. Studies12 (1977) pp. 201-209. Zbl0369.46027MR499227
- [5] J. Globevnik: On the ranges of analytic maps in infinite dimensions. (To appear in Advances in Holomorphy, Barroso Ed., North Holland). Zbl0407.46041MR520666
- [6] J. Globevnik: On the range of analytic maps on c0(Γ). (To appear in Boll. Un. Mat. Ital.)
- [7] E. Hille, R.S. Phillips: Functional Analysis and semi-groups. Amer. Math. Soc. Colloq. Publ.31 (1957). Zbl0078.10004MR89373
- [8] B. Josefson: A counterexample in the Levi problem. Proc. Inf. Dim. Holomorphy. Lecture Notes in Math.364, pp. 168-177, Springer1974. Zbl0285.32017MR393575
- [9] B. Josefson: Some remarks on Banach valued polynomials on c0(A). Infinite Dim. Holomorphy Appl. (Matos Ed.) North Holland Math. Studies12 (1977) pp. 231-238. Zbl0373.46049MR512201
- [10] E. Lacey, R.J. Whitley: Conditions under which all the bounded linear maps are compact. Math. Ann.158 (1965) 1-5. Zbl0141.32102MR173159
- [11] L. Nachbin: Topology on spaces of holomorphic mappings. Erg. der Math., Bd. 47, Springer1969. Zbl0172.39902MR254579
- [12] H.P. Rosenthal: On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math.37 (1970) 13-16. Zbl0227.46027MR270122