C -diffeomorphismen semianalytischer und subanalytischer Mengen

Klaus Reichard

Compositio Mathematica (1980)

  • Volume: 42, Issue: 3, page 401-416
  • ISSN: 0010-437X

How to cite

top

Reichard, Klaus. "$C^\infty $-diffeomorphismen semianalytischer und subanalytischer Mengen." Compositio Mathematica 42.3 (1980): 401-416. <http://eudml.org/doc/89487>.

@article{Reichard1980,
author = {Reichard, Klaus},
journal = {Compositio Mathematica},
keywords = {semianalytic set; subanalytic set; embedding dimension; real affine spaces; real analytically diffeomorphic},
language = {ger},
number = {3},
pages = {401-416},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {$C^\infty $-diffeomorphismen semianalytischer und subanalytischer Mengen},
url = {http://eudml.org/doc/89487},
volume = {42},
year = {1980},
}

TY - JOUR
AU - Reichard, Klaus
TI - $C^\infty $-diffeomorphismen semianalytischer und subanalytischer Mengen
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 42
IS - 3
SP - 401
EP - 416
LA - ger
KW - semianalytic set; subanalytic set; embedding dimension; real affine spaces; real analytically diffeomorphic
UR - http://eudml.org/doc/89487
ER -

References

top
  1. [1] M. Artin: On the solutions of analytic equations. Inv. Math.5 (1968) 277-291. Zbl0172.05301MR232018
  2. [2] T. Bloom: C' functions on a complex analytic variety. Duke Math. J.36 (1969) 283-296. Zbl0176.38102MR241688
  3. [3] P.M. Eakin and G.A. Harris: When Φ(f) convergent implies f is convergent. Math. Ann.229 (1977) 201-210. Zbl0355.13010
  4. [4] R. Ephraim: The cartesian product structure and C∞ equivalence of singularities. Trans AMS224 (1976) 299-311. Zbl0354.32006
  5. [5] A.M. Gabriélov: Formal relations between analytic functions. Funct. Anal. Appl.5 (1971) 318-319. Zbl0254.32009MR302930
  6. [6] H. Hironaka: Subanalytic sets. Number Theory, Alg. Geom. and Comm. Alg. in honour of Y. Akizuki, Tokyo (1973) 453-493. Zbl0297.32008MR377101
  7. [7] S. Lojasiewicz: Ensembles sémi-analytiques. polycopie. IHES (1965). 
  8. [8] B. Malgrange: Sur les fonctions différentiables et les ensembles analytiques. Bull. Soc. Math. France91 (1963) 113-127. Zbl0113.06302MR152673
  9. [9] B. Malgrange: Ideals of differentiable functions. Oxford University Press (1966). Zbl0177.17902MR212575
  10. [10] A. Sard: The measure of critical values of differentiable maps. Bull. AMS48 (1942) 883-890. Zbl0063.06720MR7523
  11. [11] K. Spallek: Über Singularitäten analytischer Mengen. Math. Ann.172 (1967) 249-268. Zbl0195.09401MR230925
  12. [12] K. Spallek: Differenzierbare Räume. Math. Ann.180 (1969) 269-296. Zbl0169.52901MR261035
  13. [13] K. Spallek: l-Platte Funktionen auf semianalytischen Mengen. Math. Ann.227 (1977) 277-286. Zbl0333.32025MR450630
  14. [14] J.C. Tougeron: Idéaux de fonctions différentiables. Erg. d. Math.71. Springer (1972). Zbl0251.58001MR440598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.