Derivations of the Lie algebras of analytic vector fields

Janusz Grabowski

Compositio Mathematica (1981)

  • Volume: 43, Issue: 2, page 239-252
  • ISSN: 0010-437X

How to cite

top

Grabowski, Janusz. "Derivations of the Lie algebras of analytic vector fields." Compositio Mathematica 43.2 (1981): 239-252. <http://eudml.org/doc/89499>.

@article{Grabowski1981,
author = {Grabowski, Janusz},
journal = {Compositio Mathematica},
keywords = {inner derivation; derivations of the Lie algebra of all holomorphic vector fields on a Stein manifold; derivations of the Lie algebra of all real analytic vector fields on a real analytic manifold},
language = {eng},
number = {2},
pages = {239-252},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Derivations of the Lie algebras of analytic vector fields},
url = {http://eudml.org/doc/89499},
volume = {43},
year = {1981},
}

TY - JOUR
AU - Grabowski, Janusz
TI - Derivations of the Lie algebras of analytic vector fields
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 43
IS - 2
SP - 239
EP - 252
LA - eng
KW - inner derivation; derivations of the Lie algebra of all holomorphic vector fields on a Stein manifold; derivations of the Lie algebra of all real analytic vector fields on a real analytic manifold
UR - http://eudml.org/doc/89499
ER -

References

top
  1. [1] A. Aves, A. Lichnerowicz and A. Diaz-Miranda: Sur l'algebre des automorphismes infinitésimaux d'une variété symplectique. J. Diff. Geom.9 (1974) 1-40. Zbl0283.53033
  2. [2] F. Bruhat and H. Whitney: Quelques properiétés fondamentales des ensembles analytiques-réels. Commen. Math. Helv.33 (1959) 132-160. Zbl0100.08101MR102094
  3. [3] J. Grabowski: Isomorphisms and ideals of the Lie algebras of vector fields. Invent. Math.50 (1978) 13-33. Zbl0378.57010MR516602
  4. [4] H. Grauert: On Levi's problem and the imbedding of real-analytic manifolds. Ann. Math.68 (1958) 460-472. Zbl0108.07804MR98847
  5. [5] R. Gunnig and H. Rossi: Analytic Functions of Several Complex Variables. New York: Prentice-Hall, Inc., Englewood Cliffs (1965). Zbl0141.08601MR180696
  6. [6] J. Heinze: Über die recht-symetrische Algebra und die Lie-Algebra der konvergenten Potenzreihen eines Banachraumes. Schr. Math. Inst. Univ. Münster2. Serie 16 (1979). Zbl0404.46027MR529582
  7. [7] T. Morimoto: The derivation algebras of the classical infinite Lie algebras. J. Math. Kyoto Univ.16 (1976) 1-24. Zbl0335.17009MR420649
  8. [8] R. Narasimhan: Imbedding of holomorphically complete complex spaces. Amer. J. Math.82 (1960) 917-934. Zbl0104.05402MR148942
  9. [9] F. Takens: Derivation of vector fields. Compositio Math. 26 (1973) 151-158. Zbl0258.58005MR315723

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.