On singular complex surfaces with vanishing geometric genus, and pararational singularities

Lawrence Brenton

Compositio Mathematica (1981)

  • Volume: 43, Issue: 3, page 297-315
  • ISSN: 0010-437X

How to cite

top

Brenton, Lawrence. "On singular complex surfaces with vanishing geometric genus, and pararational singularities." Compositio Mathematica 43.3 (1981): 297-315. <http://eudml.org/doc/89503>.

@article{Brenton1981,
author = {Brenton, Lawrence},
journal = {Compositio Mathematica},
keywords = {pararational singularities; normal singular compact complex surface; classification; singular points},
language = {eng},
number = {3},
pages = {297-315},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {On singular complex surfaces with vanishing geometric genus, and pararational singularities},
url = {http://eudml.org/doc/89503},
volume = {43},
year = {1981},
}

TY - JOUR
AU - Brenton, Lawrence
TI - On singular complex surfaces with vanishing geometric genus, and pararational singularities
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 43
IS - 3
SP - 297
EP - 315
LA - eng
KW - pararational singularities; normal singular compact complex surface; classification; singular points
UR - http://eudml.org/doc/89503
ER -

References

top
  1. [1] S. Abhyankar: Quasirational singularities. Amer. J. Math.101 (1979) 267-300. Zbl0425.14009MR527993
  2. [2] M. Artin: Some numerical criteria for contractability of curves on algebraic surfaces. Amer. J. Math.84 (1962) 485-496. Zbl0105.14404MR146182
  3. [3] M. Artin: On isolated rational singularities of surfaces. Am. J. Math.88 (1966) 129-136. Zbl0142.18602MR199191
  4. [4] H. Bass: On the ubiquity of Gorenstein rings. Math. Z.82 (1963) 8-28. Zbl0112.26604MR153708
  5. [5] E. Bombieri: The pluricanonical map of a complex surface, Several Complex Variables I, Proc. of the International Math. Conf., College Park, Maryland (1970) 35-87. Zbl0213.47601MR276228
  6. [6] E. Bombieri and D. Husemoller: Classifications and embeddings of surfaces, Proc. of Symposia in Pure Math.29, Algebraic Geometry, Azcata, 1974. Zbl0326.14009MR506292
  7. [7] L. Brenton: A Riemann-Roch theorem for singular surfaces, notes prepared for the Sonderforschungsbereich Theoretische Math., Univ. Bonn, Bonn, 1975. 
  8. [8] L. Brenton: Some algebraicity criteria for singular surfaces. Inv. Math.41 (1977) 129-147. Zbl0337.32010MR463508
  9. [9] L. Brenton: Some examples of singular compact analytic surfaces which are homotopy equivalent to the complex projective plane. Topology16 (1977) 423-433. Zbl0386.14019MR470253
  10. [10] L. Brenton: On singular complex surfaces with negative canonical bundle, with applications to singular compactifications of C2 and to 3-dimensional rational singularities. Math. Ann.248 (1980) 117-124. Zbl0407.14013MR573343
  11. [11] D. Burns and J. Wahl: Local contributions to global deformations of surfaces. Inv. math.26 (1974) 67-88. Zbl0288.14010MR349675
  12. [12] A. Durfee: Fifteen characterizations of rational double points and simple critical points. Enseign. Math. (2) 25 (1979) no. 1-2, 131-163. Zbl0418.14020MR543555
  13. [13] P. Duval: On isolated singularities of surfaces which do not affect the condition of adjunction. Proc. Cambridge Philos. Soc.30 (1933/34) 453-491. JFM60.0599.01
  14. [14] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann.146 (1962) 331-368. Zbl0173.33004MR137127
  15. [15] F. Hirzebruch: The Hilbert modular group, resolutions of singularities at the cusps and related problems. Sem. N. Bourbaki (1970/71) Exp. 396. Zbl0232.10017MR417187
  16. [16] F. Hirzebruch: Hilbert modular surfaces. Enseignement Math. (2) 19 (1973) 183-281. Zbl0285.14007MR393045
  17. [17] M. Hochster: Cohen-Macaulay rings, combinatorics, and simplicial complexes, Proc. 2nd Oklahoma Ring Theory Conf. (March, 1976), Marcel Dekker, New York, 1977, 171-223. Zbl0351.13009MR441987
  18. [18] M. Inoue: On surfaces of type VII0. Inv. Math.24 (1974) 269-310. Zbl0283.32019
  19. [19] M. Inoue: An example of surfaces with b1 = 1. Global Analysis, a collection of papers dedicated to K. Kodaira, Iwanami Shoten, Tokyo (1973), 83-98. 
  20. [20] K. Kodaira: On the structure of compact complex analytic surfaces, I-IV. Amer. J. Math.86 (1964) 751-798; 88 (1966) 682-721; 90 (1968) 55-83 and 1048-1065. Zbl0193.37702MR187255
  21. [21] H. Laufer: Normal two-dimensional singularities. Annals of Math. Studies no. 71, Princeton Univ. Press, Princeton, 1971. Zbl0245.32005MR320365
  22. [22] H. Laufer: On rational singularities. Amer. J. Math.94 (1972) 597-608. Zbl0251.32002MR330500
  23. [23] H. Laufer: Taut two-dimensional singularities. Math. Ann.205 (1973) 131-164. Zbl0281.32010MR333238
  24. [24] H. Laufer: On μ for surface singularities. Proc. Sym. Pure Math.30 (several complex variables), Amer. Math. Soc., Providence (1977) 45-49. Zbl0363.32009
  25. [25] H. Laufer: On minimally elliptic singularities. Amer. J. Math.99 (1977) 1257-1295. Zbl0384.32003MR568898
  26. [26] J. Milnor: Singular points of complex hypersurfaces, Annals of Math. Studies no. 61, Princeton Univ. Press, Princeton (1968). Zbl0184.48405MR239612
  27. [27] P. Wagreich: Elliptic singularities of surfaces. Amer. J. Math.92 (1970) 419-454. Zbl0204.54501MR291170

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.