# The laplacian on asymptotically flat manifolds and the specification of scalar curvature

Compositio Mathematica (1981)

- Volume: 43, Issue: 3, page 317-330
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topCantor, Murray, and Brill, Dieter. "The laplacian on asymptotically flat manifolds and the specification of scalar curvature." Compositio Mathematica 43.3 (1981): 317-330. <http://eudml.org/doc/89504>.

@article{Cantor1981,

author = {Cantor, Murray, Brill, Dieter},

journal = {Compositio Mathematica},

keywords = {Laplacian; weighted Sobolev spaces; asymptotically flat metric; conformally equivalent; vanishing scalar curvature},

language = {eng},

number = {3},

pages = {317-330},

publisher = {Sijthoff et Noordhoff International Publishers},

title = {The laplacian on asymptotically flat manifolds and the specification of scalar curvature},

url = {http://eudml.org/doc/89504},

volume = {43},

year = {1981},

}

TY - JOUR

AU - Cantor, Murray

AU - Brill, Dieter

TI - The laplacian on asymptotically flat manifolds and the specification of scalar curvature

JO - Compositio Mathematica

PY - 1981

PB - Sijthoff et Noordhoff International Publishers

VL - 43

IS - 3

SP - 317

EP - 330

LA - eng

KW - Laplacian; weighted Sobolev spaces; asymptotically flat metric; conformally equivalent; vanishing scalar curvature

UR - http://eudml.org/doc/89504

ER -

## References

top- [1] D. Brill: On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves. Ann. Phys.7, (1959) 466-483. MR108340
- [2] M. Cantor: Sobolev inequalities for Riemannian bundles, Proc. Symp. Pure Math., 27 (1975) 171-184. Zbl0323.58008MR380873
- [3] M. Cantor: Perfect fluid flows over Rn with asymptotic conditions, J. Func. Anal., 18, (1975) 73-84. Zbl0306.58007MR380872
- [4] M. Cantor: The existence of non-trivial asymptotically flat initial data for vacuum spacetimes, Commun. Math. Phys., 57 (1977) 83-96. Zbl0404.53025MR462440
- [5] M. Cantor: Some problems of global analysis on asymptotically simple manifolds, Comp. Math., 38, Fasc. 1 (1979) 3-35. Zbl0402.58004MR523260
- [6] M. Cantor: A necessary and sufficient condition for York data to specify an asymptotically flat spacetime, J. Math. Phys., 20(8), 1741-1744. Zbl0427.35072MR543911
- [7] M. Cantor: Elliptic operators and the decomposition of tensor fields, (to appear in Bull. A.M.S.). Zbl0481.58023MR628659
- [8] K. Eppley: Evolution of time-symmetric gravitational waves: Initial data and apparent horizons, Phys. Rev.D, 16, #6 (1977) 1609-1614. MR489642
- [9] A. Fischer and J. Marsden: Deformations of the Scalar curvature, Duke Math. J., 42 (1975) 519-547. Zbl0336.53032MR380907
- [10] S. Hawking: The path-integration approach to quantum gravity, in General Relativity, a Centenary Survey (S. Hawking and W. Israel, eds.) (1979) Cambridge University Press.
- [11] I. Kato: Perturbation theory for linear operators, Springer-Verlag, 1966, New York. Zbl0148.12601MR203473
- [12] J. Kazden and F. Warner: Scalar curvature and conformal deformation of Riemannian structure, J. Diff. Geom., 10 (1975) 113-134. Zbl0296.53037MR365409
- [13] J. Kazden and F. Warner: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. Math., 101, #2 (1975) 317-331. Zbl0297.53020MR375153
- [14] R. Mcowen: On Elliptic Operators on Rn, (to appear in Comm. P.D.E.). Zbl0448.35042
- [15] J.A. Wheeler: Geometrodynamics and the issue of the final state, in Relativity, Groups, and Topology, (1964) (ed. by DeWitt and DeWitt). Gordon and Breach, New York. Zbl0148.46204MR168332

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.