The characterization of strictly parabolic spaces

Wilhelm Stoll

Compositio Mathematica (1981)

  • Volume: 44, Issue: 1-3, page 305-373
  • ISSN: 0010-437X

How to cite

top

Stoll, Wilhelm. "The characterization of strictly parabolic spaces." Compositio Mathematica 44.1-3 (1981): 305-373. <http://eudml.org/doc/89520>.

@article{Stoll1981,
author = {Stoll, Wilhelm},
journal = {Compositio Mathematica},
keywords = {strictly parabolic space; Whitney tangent cone; singularities},
language = {eng},
number = {1-3},
pages = {305-373},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The characterization of strictly parabolic spaces},
url = {http://eudml.org/doc/89520},
volume = {44},
year = {1981},
}

TY - JOUR
AU - Stoll, Wilhelm
TI - The characterization of strictly parabolic spaces
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 44
IS - 1-3
SP - 305
EP - 373
LA - eng
KW - strictly parabolic space; Whitney tangent cone; singularities
UR - http://eudml.org/doc/89520
ER -

References

top
  1. [1] E. Bedford and B.A. Taylor: The Dirichlet problem for a complex Monge-Ampère equation. Bull. Amer. Math. Soc.82 (1976) 102-104. Zbl0322.31008MR393574
  2. [2] E. Bedford and B.A. Taylor: The Dirichlet problem for a complex Monge-Ampère equation. Proc. Symp. Pure Math.30 (1977) 109-113. Zbl0356.31007MR457775
  3. [3] E. Bedford and M. Kalka: Foliations and complex Monge-Ampère equations. Comm. Pure Appl. Math.30 (1977) 510-538. Zbl0351.35063MR481107
  4. [4] E. Bedford and D. Burns: Holomorphic mapping of annuli in C n and the associated extremal function. Ann. Scuola Norm. Sup. Pisa6 (1979) 381-414. Zbl0422.32021MR553791
  5. [5] S.S. Chern, H. Levine and L. Nirenberg: Intrinsic norms on a complex manifold. Global Analysis (Papers in Honor of K. Kodaira), University of Tokyo Press, Tokyo, 1969, 119-139. Zbl0202.11603MR254877
  6. [6] H. Federer: Geometric measure theory. Grundl. d. Math. Wiss.153, Springer-Verlag, 1969, pp. 676. Zbl0176.00801MR257325
  7. [7] K. Fritsche: q-konvexe Restmengen in kompakten komplexen Mannigfaltigkeiten, Math. Ann.221 (1976) 251-273. Zbl0327.32007MR419840
  8. [8] R.E. Greene and H. Wu: Analysis in non-compact Kähler manifolds. Proc. Symp. Pure Math.30 (1977) 69-100. Zbl0383.32005
  9. [9] Ph. Griffiths and J. King: Nevanlinna theory and holomorphic mappings between algebraic varieties. Acta Math.130 (1973) 145-220. Zbl0258.32009MR427690
  10. [10] S. Kobayashi and K. Nomizu: Foundations of differential geometry. Interscience Tract, Pure Appl. Math.15, John Wiley and Sons, New York - London- Sydney, (Vol. 1) 1963, (Vol. 2) 1969. Zbl0175.48504
  11. [11] B. Malgrange: Sur les fonctions differentiables et les ensembles analytiques. Bull. Soc. Math. France91 (1963) 113-127. Zbl0113.06302MR152673
  12. [12] B. Malgrange: Ideals of differentiable functions. Tata Institute of Fundamental Research, Studies in Math.3 (1966) pp. 106. Zbl0177.17902MR212575
  13. [13] J. Morrow and K. Kodaira: Complex Manifolds. Holt, Rinehart and Winston, New York, 1971, pp. 192. Zbl0325.32001MR302937
  14. [14] Y.T. Siu and S.T. Yau: Complete Kähler manifolds with non-positive curvature of faster than quadratic decay. Ann. of Math.105 (1977) 255-264. Zbl0358.32006MR437797
  15. [15] Y.T. Siu and S.T. Yau: Compact Kähler manifolds of positive bisectional curvature, preprint, 33 pp. of ms. Zbl0442.53056MR577360
  16. [16] W. Stoll: Value distribution on parabolic spaces, Lecture Notes in Mathematics No. 600, Springer-Verlag, Berlin - Heidelberg - New York, 1977, pp. 216. Zbl0367.32001MR590436
  17. [17] W. Stoll: Variétés strictement paraboliques. C. R. Acad. Sci. Paris (Série A) 285 (1977) 757-759. Zbl0418.32005MR457793
  18. [18] W. Stoll: The characterization of strictly parabolic manifolds. Ann. Scuola Norm. Sup. Pisa7 (1980) 87-154. Zbl0438.32005MR577327
  19. [19] C. Tung: The first main theorem of value distribution on complex spaces. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 15 (1979) no. 4, 91-263. Zbl0496.32018MR563153
  20. [20] C. Tung: Pseudoconvexity and value distribution for Schubert zeroes. Michigan Math. J.26 (1979) 243-256. Zbl0441.32010MR532325
  21. [21] J.H.C. Whitehead: Convex regions in the geometry of paths, Quart. J. Math.3 (1932) 33-92, 226-227. Zbl0007.36801JFM59.1349.02
  22. [22] H. Whitney: Complex Analytic Varieties. Addison-Wesley Publishing Co., Reading, Massachusetts, 1972, pp. 339. Zbl0265.32008MR387634
  23. [23] P.M. Wong: Defect relations for meromorphic maps on parabolic manifolds. Preprint, 79 pp. of ms. 
  24. [24] S.T. Yau: Cruvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure Appl. Math.31 (1978) 340-412. Zbl0369.53059MR480350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.