Relations between holomorphic quadratic differentials II
Compositio Mathematica (1981)
- Volume: 44, Issue: 1-3, page 67-77
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [AM] A. Andreotti and A. Mayer: On period relations for abelian integrals on algebraic curves. Ann. Scuola Norm. Sup. Pisa (1967) pp. 180-239. Zbl0222.14024MR220740
- [B] A. Beauville: Prym varieties and the Schottky problem. Inventiones Math. (1977) pp. 149-186. Zbl0333.14013MR572974
- [F1] H.M. Farkas: Singular points of theta functions, quadric relations, and holomorphic differentials with prescribed zeros. Proceedings of the Colloquium on Complex Analysis, Joensuu1978. Lecture Notes in Mathematics #747 pp. 108-122, Springer-Verlag, N.Y. Zbl0419.30039MR553034
- [F 2] H.M. Farkas: Relations Between Quadratic Differentials, Advances in the theory of Riemann Surfaces, Ann. of Math. Studies (66), Princeton Univ. Press (1971) pp. 141-156. Zbl0233.32020MR288251
- [FK] H.M. Farkas and I. Kra: Riemann Surfaces, Springer-Verlag, N.Y.1980. Zbl0475.30001MR583745
- [RF] H.E. Rauch and H.M. Farkas: Theta Functions with Applications to Riemann Surfaces, Williams and Wilkins, Balt. Md. (1974). Zbl0292.30015MR352108