Loops which are cyclic extensions of their nuclei

Edgar G. Goodaire; D. A. Robinson

Compositio Mathematica (1982)

  • Volume: 45, Issue: 3, page 341-356
  • ISSN: 0010-437X

How to cite

top

Goodaire, Edgar G., and Robinson, D. A.. "Loops which are cyclic extensions of their nuclei." Compositio Mathematica 45.3 (1982): 341-356. <http://eudml.org/doc/89540>.

@article{Goodaire1982,
author = {Goodaire, Edgar G., Robinson, D. A.},
journal = {Compositio Mathematica},
keywords = {normal subloops; weak-inverse loops; cyclic extension; nucleus; power- associative loop; Bol loop; loop-isotopes; finite G-loops; G-loops of composite orders},
language = {eng},
number = {3},
pages = {341-356},
publisher = {Martinus Nijhoff Publishers},
title = {Loops which are cyclic extensions of their nuclei},
url = {http://eudml.org/doc/89540},
volume = {45},
year = {1982},
}

TY - JOUR
AU - Goodaire, Edgar G.
AU - Robinson, D. A.
TI - Loops which are cyclic extensions of their nuclei
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 45
IS - 3
SP - 341
EP - 356
LA - eng
KW - normal subloops; weak-inverse loops; cyclic extension; nucleus; power- associative loop; Bol loop; loop-isotopes; finite G-loops; G-loops of composite orders
UR - http://eudml.org/doc/89540
ER -

References

top
  1. [1] V.D. Belousov: Foundations of the theory of quasigroups and loops (Russian), Izdat. "Nauka", Moskow, 1967. MR218483
  2. [2] R.H. Bruck: A survey of binary systems, Springer-Verlag, 1958. Zbl0141.01401MR93552
  3. [3] R.P. Burn: Finite Bol loops, Math. Proc. Cambridge Philos. Soc.84 (1978), no 3, 377-385. Zbl0385.20043MR492030
  4. [4] Orin Chein: Moufang loops of small order I., Trans. Amer. Math. Soc.188 (1974) 31-51. Zbl0286.20088MR330336
  5. [5] Edgar G. Goodaire and D.A. Robinson: A class of loops which are isomorphic to all loop isotopes, submitted. Zbl0467.20052
  6. [6] Marshall Hall, Jr.: The theory of groups, Macmillan, 1959. Zbl0084.02202MR103215
  7. [7] Harald Niederreiter and KAR L.H. Robinson: Bol loops of order pq, to appear. Zbl0463.20050MR600241
  8. [8] J. Marshall Osborn: Loops with the weak inverse property, Pacific J. Math.10 (1960) 295-304. Zbl0091.02101MR111800
  9. [9] D.A. Robinson: Bol loops, Trans. Amer. Math. Soc.123 (1966) 341-354. Zbl0163.02001MR194545
  10. [10] Eric L. Wilson: A class of loops with the isotopy-isomorphy property, Canad. J. Math.18 (1966) 589-592. Zbl0139.24702MR197614
  11. [11] Robert L. Wilson, Jr.: (a) Loop isotopism and isomorphism and extensions of universal algebras, Ph.D. Thesis, University of Wisconsin, Madison, 1969.(b) Isotopy-isomorphy loops of prime order, J. Algebra31 (1974) 117-119.(c) Quasidirect products of quasigroups, Comm. Algebra3(9) (1975) 835-850. Zbl0328.20067MR376937

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.