The volumes of small geodesic balls for a metric connection
Compositio Mathematica (1982)
- Volume: 46, Issue: 1, page 121-132
- ISSN: 0010-437X
Access Full Article
topHow to cite
topMiquel, V.. "The volumes of small geodesic balls for a metric connection." Compositio Mathematica 46.1 (1982): 121-132. <http://eudml.org/doc/89544>.
@article{Miquel1982,
author = {Miquel, V.},
journal = {Compositio Mathematica},
keywords = {geodesic balls; metric connections; volume; Taylor's expansion; torsion tensor},
language = {eng},
number = {1},
pages = {121-132},
publisher = {Martinus Nijhoff Publishers},
title = {The volumes of small geodesic balls for a metric connection},
url = {http://eudml.org/doc/89544},
volume = {46},
year = {1982},
}
TY - JOUR
AU - Miquel, V.
TI - The volumes of small geodesic balls for a metric connection
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 46
IS - 1
SP - 121
EP - 132
LA - eng
KW - geodesic balls; metric connections; volume; Taylor's expansion; torsion tensor
UR - http://eudml.org/doc/89544
ER -
References
top- [1] M. Berger, P. Gauduchon, and E. Mazet: Le spectre d'une variété riemannienne. Lecture Notes in Mathematics, vol. 194, Springer Verlag, Berlin and New York, 1971. Zbl0223.53034MR282313
- [2] M. Berger and B. Gostiaux: Géometrie Différentielle. Armand Colin, Paris, 1972. Zbl0251.53001MR494180
- [3] J. Bertrand, C.F. Diguet and V. Puiseux: Démonstration d'un théorème de Gauss. Journal de Mathématiques13 (1848) 80-90.
- [4] F.J. Flaherty: The volume of a tube in complex projective space. Illinois J. Math.16 (1972) 627-638. Zbl0248.53051MR315638
- [5] A. Gray: The volume of a small geodesic ball of a Riemannian manifold. Michigan Math. J.20 (1973) 329-344. Zbl0279.58003MR339002
- [6] A. Gray and L. Vanhecke: Riemannian geometry as determined by the volume of small geodesic balls. Acta Math.142 (1979) 157-198. Zbl0428.53017MR521460
- [7] A. Gray and L. Vanhecke: The volumes of tubes about curves in a Riemannian manifold (to appear). Zbl0491.53035MR647431
- [8] A. Gray and L. Vanhecke: The volumes of tubes in a Riemannian manifold (to appear). Zbl0511.53059MR706043
- [9] P.A. Griffiths: Complex differential and integral geometry and curvature integrals associated to singularities of complex analytic varieties. Duke Math. J.45 (1978) 427-512. Zbl0409.53048MR507455
- [10] N. Hicks: Notes on Differential Geometry. Van Nostrand, New York, 1965. Zbl0132.15104MR179691
- [11] H. Hotelling: Tubes and spheres in n-spaces, and a class of statistical problems. Amer. J. Math.61 (1939) 440-460. Zbl0020.38302MR1507387JFM65.0795.02
- [12] V. Miquel and A.M. Naveira: Sur la relation entre la fonction volume de certaines boules géodésiques et la géométrie d'une variété riemannienne. C.R. Acad. Sci. Paris290 (1980) 379-381. Zbl0428.53018MR567534
- [13] H.S. Ruse, A.G. Walker, T.J. Willmore: Harmonic Spaces. Edizioni Cremonese, Rome, 1961. Zbl0134.39202MR142062
- [14] H. Vermeil: Notiz über das mittlere Krümmungsmass einer n-fach ausgedehnten Riemann'schen Mannigfaltigkeit. Akad. Wissen. Gottingen Nach. (1917) 334-344. Zbl46.1130.01JFM46.1130.01
- [15] H. Weyl: On the volume of tubes. Amer. J. Math.61 (1939) 461-472. Zbl0021.35503MR1507388JFM65.0796.01
- [16] H. Weyl: The Classical Groups. Princeton Univ. Press, Princeton, N.J., 1939.
- [17] R.A. Wolf: The volume of tubes in complex projective space. Trans. Amer. Math. Soc.157 (1971) 347-371. Zbl0241.53033MR281237
- [18] K. Yano: On semi-symmetric metric connection. Rev. Roum. Math. Pures et Appl.XV (1970) 1579-1586. Zbl0213.48401MR275321
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.