The volumes of small geodesic balls for a metric connection

V. Miquel

Compositio Mathematica (1982)

  • Volume: 46, Issue: 1, page 121-132
  • ISSN: 0010-437X

How to cite


Miquel, V.. "The volumes of small geodesic balls for a metric connection." Compositio Mathematica 46.1 (1982): 121-132. <>.

author = {Miquel, V.},
journal = {Compositio Mathematica},
keywords = {geodesic balls; metric connections; volume; Taylor's expansion; torsion tensor},
language = {eng},
number = {1},
pages = {121-132},
publisher = {Martinus Nijhoff Publishers},
title = {The volumes of small geodesic balls for a metric connection},
url = {},
volume = {46},
year = {1982},

AU - Miquel, V.
TI - The volumes of small geodesic balls for a metric connection
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 46
IS - 1
SP - 121
EP - 132
LA - eng
KW - geodesic balls; metric connections; volume; Taylor's expansion; torsion tensor
UR -
ER -


  1. [1] M. Berger, P. Gauduchon, and E. Mazet: Le spectre d'une variété riemannienne. Lecture Notes in Mathematics, vol. 194, Springer Verlag, Berlin and New York, 1971. Zbl0223.53034MR282313
  2. [2] M. Berger and B. Gostiaux: Géometrie Différentielle. Armand Colin, Paris, 1972. Zbl0251.53001MR494180
  3. [3] J. Bertrand, C.F. Diguet and V. Puiseux: Démonstration d'un théorème de Gauss. Journal de Mathématiques13 (1848) 80-90. 
  4. [4] F.J. Flaherty: The volume of a tube in complex projective space. Illinois J. Math.16 (1972) 627-638. Zbl0248.53051MR315638
  5. [5] A. Gray: The volume of a small geodesic ball of a Riemannian manifold. Michigan Math. J.20 (1973) 329-344. Zbl0279.58003MR339002
  6. [6] A. Gray and L. Vanhecke: Riemannian geometry as determined by the volume of small geodesic balls. Acta Math.142 (1979) 157-198. Zbl0428.53017MR521460
  7. [7] A. Gray and L. Vanhecke: The volumes of tubes about curves in a Riemannian manifold (to appear). Zbl0491.53035MR647431
  8. [8] A. Gray and L. Vanhecke: The volumes of tubes in a Riemannian manifold (to appear). Zbl0511.53059MR706043
  9. [9] P.A. Griffiths: Complex differential and integral geometry and curvature integrals associated to singularities of complex analytic varieties. Duke Math. J.45 (1978) 427-512. Zbl0409.53048MR507455
  10. [10] N. Hicks: Notes on Differential Geometry. Van Nostrand, New York, 1965. Zbl0132.15104MR179691
  11. [11] H. Hotelling: Tubes and spheres in n-spaces, and a class of statistical problems. Amer. J. Math.61 (1939) 440-460. Zbl0020.38302MR1507387JFM65.0795.02
  12. [12] V. Miquel and A.M. Naveira: Sur la relation entre la fonction volume de certaines boules géodésiques et la géométrie d'une variété riemannienne. C.R. Acad. Sci. Paris290 (1980) 379-381. Zbl0428.53018MR567534
  13. [13] H.S. Ruse, A.G. Walker, T.J. Willmore: Harmonic Spaces. Edizioni Cremonese, Rome, 1961. Zbl0134.39202MR142062
  14. [14] H. Vermeil: Notiz über das mittlere Krümmungsmass einer n-fach ausgedehnten Riemann'schen Mannigfaltigkeit. Akad. Wissen. Gottingen Nach. (1917) 334-344. Zbl46.1130.01JFM46.1130.01
  15. [15] H. Weyl: On the volume of tubes. Amer. J. Math.61 (1939) 461-472. Zbl0021.35503MR1507388JFM65.0796.01
  16. [16] H. Weyl: The Classical Groups. Princeton Univ. Press, Princeton, N.J., 1939. 
  17. [17] R.A. Wolf: The volume of tubes in complex projective space. Trans. Amer. Math. Soc.157 (1971) 347-371. Zbl0241.53033MR281237
  18. [18] K. Yano: On semi-symmetric metric connection. Rev. Roum. Math. Pures et Appl.XV (1970) 1579-1586. Zbl0213.48401MR275321

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.