Derivatives of L -functions at s = 0 (after Stark, Tate, Bienenfeld and Lichtenbaum)

T. Chinburg

Compositio Mathematica (1983)

  • Volume: 48, Issue: 1, page 119-127
  • ISSN: 0010-437X

How to cite

top

Chinburg, T.. "Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum)." Compositio Mathematica 48.1 (1983): 119-127. <http://eudml.org/doc/89583>.

@article{Chinburg1983,
author = {Chinburg, T.},
journal = {Compositio Mathematica},
keywords = {derivatives; Stark's conjecture; L-function; complex representation},
language = {eng},
number = {1},
pages = {119-127},
publisher = {Martinus Nijhoff Publishers},
title = {Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum)},
url = {http://eudml.org/doc/89583},
volume = {48},
year = {1983},
}

TY - JOUR
AU - Chinburg, T.
TI - Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum)
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 48
IS - 1
SP - 119
EP - 127
LA - eng
KW - derivatives; Stark's conjecture; L-function; complex representation
UR - http://eudml.org/doc/89583
ER -

References

top
  1. [1] M. Artin: Grothendieck Topologies. Harvard University, 1962. Zbl0208.48701
  2. [2] M. Artin and J.L. Verdier: Seminar notes on the etale cohomology of number fields. In: Proceedings of the Woods Hole Summer Institute in Algebraic Geometry, 1964. 
  3. [3] M. Bienenfeld: Ph.D. Dissertation. Cornell University, 1980. 
  4. [4] T. Chinburg: On a consequence of some conjectures on L-series, preprint (1981). 
  5. [5] S. Lichtenbaum: Values of zeta and L-functions at zero. Asterisque24-25 (1975) 133-138. Zbl0312.12016MR401711
  6. [6] I. Reiner: Maximal Orders. Academic Press, U.S.A., 1975. Zbl0305.16001MR1972204
  7. [7] J.P. Serre: Linear Representations of Finite Groups. Springer-Verlag, U.S.A., 1977. Zbl0355.20006MR450380
  8. [8] H. Stark: L-functions at s = 1. I, II, III, IV, Advances in Math.7 (1971) 301-343; 17 (1975) 60-92; 22 (1976) 64-84; 35 (1980) 197-235. Zbl0475.12018
  9. [9] H. Stark: Derivatives of L-series at s = 0. To appear. MR633665
  10. [10] H. Stark: Class Fields and Modular Forms of Weight One. In: Modular Functions of One Variable V, Lecture Notes in Mathematics #601, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0363.12010MR450243
  11. [11] J. Tate: Les conjectures de Stark sur les fonctions L d'Artin en s = 0; notes d'un cours à Orsay redigées par D. Bernadi et N. Schappacher. To appear. Zbl0545.12009MR782485
  12. [12] A. Weil: Basic Number Theory, 2nd ed. Springer-Verlag, U.S.A., 1974. Zbl0326.12001MR427267

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.