Derivatives of -functions at (after Stark, Tate, Bienenfeld and Lichtenbaum)
Compositio Mathematica (1983)
- Volume: 48, Issue: 1, page 119-127
- ISSN: 0010-437X
Access Full Article
topHow to cite
topChinburg, T.. "Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum)." Compositio Mathematica 48.1 (1983): 119-127. <http://eudml.org/doc/89583>.
@article{Chinburg1983,
author = {Chinburg, T.},
journal = {Compositio Mathematica},
keywords = {derivatives; Stark's conjecture; L-function; complex representation},
language = {eng},
number = {1},
pages = {119-127},
publisher = {Martinus Nijhoff Publishers},
title = {Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum)},
url = {http://eudml.org/doc/89583},
volume = {48},
year = {1983},
}
TY - JOUR
AU - Chinburg, T.
TI - Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum)
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 48
IS - 1
SP - 119
EP - 127
LA - eng
KW - derivatives; Stark's conjecture; L-function; complex representation
UR - http://eudml.org/doc/89583
ER -
References
top- [1] M. Artin: Grothendieck Topologies. Harvard University, 1962. Zbl0208.48701
- [2] M. Artin and J.L. Verdier: Seminar notes on the etale cohomology of number fields. In: Proceedings of the Woods Hole Summer Institute in Algebraic Geometry, 1964.
- [3] M. Bienenfeld: Ph.D. Dissertation. Cornell University, 1980.
- [4] T. Chinburg: On a consequence of some conjectures on L-series, preprint (1981).
- [5] S. Lichtenbaum: Values of zeta and L-functions at zero. Asterisque24-25 (1975) 133-138. Zbl0312.12016MR401711
- [6] I. Reiner: Maximal Orders. Academic Press, U.S.A., 1975. Zbl0305.16001MR1972204
- [7] J.P. Serre: Linear Representations of Finite Groups. Springer-Verlag, U.S.A., 1977. Zbl0355.20006MR450380
- [8] H. Stark: L-functions at s = 1. I, II, III, IV, Advances in Math.7 (1971) 301-343; 17 (1975) 60-92; 22 (1976) 64-84; 35 (1980) 197-235. Zbl0475.12018
- [9] H. Stark: Derivatives of L-series at s = 0. To appear. MR633665
- [10] H. Stark: Class Fields and Modular Forms of Weight One. In: Modular Functions of One Variable V, Lecture Notes in Mathematics #601, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0363.12010MR450243
- [11] J. Tate: Les conjectures de Stark sur les fonctions L d'Artin en s = 0; notes d'un cours à Orsay redigées par D. Bernadi et N. Schappacher. To appear. Zbl0545.12009MR782485
- [12] A. Weil: Basic Number Theory, 2nd ed. Springer-Verlag, U.S.A., 1974. Zbl0326.12001MR427267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.