On equivariant finiteness

Sławomir Kwasik

Compositio Mathematica (1983)

  • Volume: 48, Issue: 3, page 363-372
  • ISSN: 0010-437X

How to cite

top

Kwasik, Sławomir. "On equivariant finiteness." Compositio Mathematica 48.3 (1983): 363-372. <http://eudml.org/doc/89599>.

@article{Kwasik1983,
author = {Kwasik, Sławomir},
journal = {Compositio Mathematica},
keywords = {equivariant finiteness obstruction; finitely dominated G-complex},
language = {eng},
number = {3},
pages = {363-372},
publisher = {Martinus Nijhoff Publishers},
title = {On equivariant finiteness},
url = {http://eudml.org/doc/89599},
volume = {48},
year = {1983},
}

TY - JOUR
AU - Kwasik, Sławomir
TI - On equivariant finiteness
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 48
IS - 3
SP - 363
EP - 372
LA - eng
KW - equivariant finiteness obstruction; finitely dominated G-complex
UR - http://eudml.org/doc/89599
ER -

References

top
  1. [1] J.A. Baglivo: An equivariant Wall obstruction theory. Trans. Amer. Math. Soc.256 (1978) 305-324. Zbl0449.57011MR546920
  2. [2] H. Bass: Algebraic K-theory, W.A. Benjamin, New York, 1969. Zbl0174.30302MR249491
  3. [3] T.A. Chapman: Invariance of torsion and the Borsuk Conjecture. Can. J. Math.6 (1980) 1333-1341. Zbl0539.57009MR604688
  4. [4] M. Cohen: A course in simple homotopy theory. Graduate texts in Math.10, Springer, 1973. Zbl0261.57009MR362320
  5. [5] S. Ferry: A simple-homotopy approach to the finiteness obstruction. In Proceedings : Shape Theory and Geometric Topology, Dubrovnik, 1981.Lect. Notes in Math.870 (1981) 73-81. Zbl0472.57014MR643523
  6. [6] H. Hauschild: Äquivariante Whiteheadtorsion, Manuscripta Mathematica26 (1978) 63-82. Zbl0402.57031MR513146
  7. [7] S. Jllman: Whitehead torsion and group actions. Annales Acad. Sci. Fennicae A. J.588 (1974). Zbl0303.57006
  8. [8] S. Kwasik: On the equivariant homotopy type of G—ANR's. Proc. Amer. Math. Soc.267 (1981) 193-194. Zbl0495.57013
  9. [9] R. Lashof and M. Rothenberg: G-smoothing theory. Proceedings of Symposia in Pure Mathematics, vol. XXXII, Part I, AMS (1978) 211-266. Zbl0407.57018MR520506
  10. [10] C.P. Rourke and B.J. Sanderson: Introduction to Piecewise-Linear Topology, Springer-Verlag, 1972. Zbl0477.57003MR350744
  11. [11] C.T.C. Wall: Finiteness conditions for CW complexes. Ann. Math.81 (1965) 55-69. Zbl0152.21902MR171284
  12. [12] S. Waner: Equivariant homotopy theory and Milnor's theorem. Trans. Amer. Math. Soc.258 (1980) 351-368. Zbl0444.55010MR558178

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.