Special values of L -functions attached to X 1 ( N )

S. Kamienny; G. Stevens

Compositio Mathematica (1983)

  • Volume: 49, Issue: 1, page 121-142
  • ISSN: 0010-437X

How to cite

top

Kamienny, S., and Stevens, G.. "Special values of $L$-functions attached to $X_1( N)$." Compositio Mathematica 49.1 (1983): 121-142. <http://eudml.org/doc/89602>.

@article{Kamienny1983,
author = {Kamienny, S., Stevens, G.},
journal = {Compositio Mathematica},
keywords = {Birch Swinnerton-Dyer conjectures; universal special value of L-function; Dedekind sum},
language = {eng},
number = {1},
pages = {121-142},
publisher = {Martinus Nijhoff Publishers},
title = {Special values of $L$-functions attached to $X_1( N)$},
url = {http://eudml.org/doc/89602},
volume = {49},
year = {1983},
}

TY - JOUR
AU - Kamienny, S.
AU - Stevens, G.
TI - Special values of $L$-functions attached to $X_1( N)$
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 49
IS - 1
SP - 121
EP - 142
LA - eng
KW - Birch Swinnerton-Dyer conjectures; universal special value of L-function; Dedekind sum
UR - http://eudml.org/doc/89602
ER -

References

top
  1. [1] B.J. Birch: Elliptic Curves, a Progress Report. Proceedings of the 1969 Summer Institute on Number Theory, Stoney Brook, New York AMS, pp. 396-400, 1971. Zbl0214.19801MR314845
  2. [2] E. Friedman: Ideal class groups in basic Zp1 x ... x Zpn extensions with abelian base field. Inv. Math.65 (1982) 425-440. Zbl0495.12007MR643561
  3. [3] S. Kamienny: On J1(p) and the Conjecture of Birch and Swinnerton-Dyer. Duke Math. J.49 (1982) 329-340. Zbl0504.10012MR659944
  4. [4] D. Kubert and S. Lang: Modular Units, Berlin-Heidelberg -New York, Springer-Verlag, 1981. Zbl0492.12002MR648603
  5. [5] J. Manin: Parabolic Points and Zeta Functions of Modular Curves. Izv. Akad. Nauk SSSR, Vol. 6, No. 1, (1972); AMS translation pp. 19-64. Zbl0248.14010MR314846
  6. [6] B. Mazur: Modular Curves and the Eisenstein Ideal. Publ. Math. I.H.E.S.47 (1977) 33-189. Zbl0394.14008MR488287
  7. [7] B. Mazur: On the Arithmetic of Special Values of L-functions. Inv. Math.55 (1979) 207-240. Zbl0426.14009MR553997
  8. [8] H. Rademacher: Collected Papers, Volume II, Cambridge, M.I.T. Press (1974). 
  9. [9] B. Schoeneberg: Elliptic Modular Functions, Springer, Grundl. d. Math. Wiss., Band 203, (1974). Zbl0285.10016MR412107
  10. [10] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press (1971). Zbl0221.10029MR1291394
  11. [11] G. Shimura: On the Periods of Modular Forms. Math. Ann.229 (1977) 211-221. Zbl0363.10019
  12. [12] L. Washington: The non-p-part of the class number in a cyclotomic Zp-extcnsion. Inv. Math.49 (1978) 87-97. Zbl0403.12007MR511097

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.