Equivalence of generic mappings and C normalization

Terence Gaffney; Leslie Wilson

Compositio Mathematica (1983)

  • Volume: 49, Issue: 3, page 291-308
  • ISSN: 0010-437X

How to cite


Gaffney, Terence, and Wilson, Leslie. "Equivalence of generic mappings and $C^\infty $ normalization." Compositio Mathematica 49.3 (1983): 291-308. <http://eudml.org/doc/89614>.

author = {Gaffney, Terence, Wilson, Leslie},
journal = {Compositio Mathematica},
keywords = {global equivalence theorem; discriminant; critical normalization},
language = {eng},
number = {3},
pages = {291-308},
publisher = {Martinus Nijhoff Publishers},
title = {Equivalence of generic mappings and $C^\infty $ normalization},
url = {http://eudml.org/doc/89614},
volume = {49},
year = {1983},

AU - Gaffney, Terence
AU - Wilson, Leslie
TI - Equivalence of generic mappings and $C^\infty $ normalization
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 49
IS - 3
SP - 291
EP - 308
LA - eng
KW - global equivalence theorem; discriminant; critical normalization
UR - http://eudml.org/doc/89614
ER -


  1. [1] E. Bierstone and P. Milman: Composite differentiable functions. Lecture Notes, AMS Symposium on Singularities, Arcata, 1981. Zbl0519.58003MR678480
  2. [2] E. Bierstone and G. Schwartz: The extension problem and related themes in differential analysis. Lecture Notes, AMS Symposium on Singularities, Arcata, 1981. Zbl0526.32006
  3. [3] S. Blank: Extending immersions and regular homotopies in codimension 1. Ph.D. Thesis, Brandeis University, 1967. 
  4. [4] T. Bröcker: Differentiable germs and catastrophes. Translated by L. Lander, London Math. Society Lecture Notes Series 17, Cambridge University Press, 1975. Zbl0302.58006MR494220
  5. [5] J. Damon: The relation between C∞ and topological stability. Bol. Soc. Brasil. Mat. 8 (1977) 1-38. Zbl0471.58006
  6. [6] A. Du Plessis: Genericity and smooth finite determinacy. In: AMS Proceedings of Symposia in Pure Mathematics 40 (1982). Zbl0523.58009MR713068
  7. [7] A. Du Plessis: On the genericity of topologically finitely-determined map-germs. Topology21 (1982) 131-156. Zbl0499.58007MR641997
  8. [8] A. Du Plessis and H. Brodersen: On smooth ∞-determinacy and topological finite determinancy. Preliminary version. 
  9. [9] A. Du Plessis, T. Gaffney and L. Wilson: Map-germs determined by their discriminant. In preparation. Zbl0891.58006
  10. [10] A. Du Plessis and L. Wilson: Right-symmetry of map-germs. In Preparation. 
  11. [11] G. Francis and S. Troyer: Excellent maps with given folds and cusps. Houston J. Math.3 (1977) 165-194. Zbl0356.57028MR516183
  12. [12] T. Gaffney: Properties of finitely determined germs. Ph.D. Thesis, Brandeis University, 1975. 
  13. [13] T. Gaffney and L. Wilson: Equivalence theorems in global singularity theory. AMS Symposium on Singularities, Arcata, Proceedings of Symposia in Pure Math. 40, to appear. Zbl0524.58008MR713083
  14. [14] D. Husemoller: Fibre bundles. Graduate texts in mathematics # 20, Springer-Verlag, New York, 1975. Zbl0307.55015MR1249482
  15. [15] K. Jänich: Symmetry properties of singularities of C∞-functions. Math. Ann.238 (1978) 147-156. Zbl0373.58002
  16. [16] B. Malgrange: Ideals of differentiable functions. Oxford University Press, 1966. Zbl0177.17902MR212575
  17. [17] J. Merrien: Faisceaux analytiques semi-cohérent et fonctions différentiables. Thèse, Université de Rennes, 1980. Ann. Inst. Fourier32, 2 (1982) 229-260. Zbl0462.58005MR599629
  18. [18] R. Narasimhan: Introduction to the theory of analytic spaces. Lecture notes in mathematics no. 25, Springer-Verlag, New York, 1966. Zbl0168.06003MR217337
  19. [19] F. Pham: Remarque sur l'équivalence des fonctions de phase. C. R. Acad. Sci. Paris290 (23 juin 1980) 1095-1097. Zbl0459.58003MR587864
  20. [20] B. Teissier: The hunting of invariants in the geometry of the discriminant. Real and complex singularities, P. Holm, ed., Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands, 1977. MR568901
  21. [21] J.C. Tougeron: Idéaux de fonctions différentiables. Ergebnisse Band 71, Springer-Verlag, New York, 1972. Zbl0251.58001MR440598
  22. [22] C.T.C. Wall: Finite determinacy of smooth map-germs. Bull. London Math. Soc.13 (1981) 481-539. Zbl0451.58009MR634595
  23. [23] L. Wilson: Equivalence of stable mappings between two-dimensional manifolds. J. Differential Geom.11 (1976) 1-14. Zbl0331.58004MR410790
  24. [24] L. Wilson: Global singularity theory. Institute of Mathematics, University of Aarhus (Denmark), Seminar Notes No. 1 (1982) 129-137. Zbl0504.58008
  25. [25] K. Wirthmüller: Singularities determined by their discriminant. Math. Ann.252 (1980) 237-245. Zbl0425.32003MR593636
  26. [26] O. Zariski and P. Samuel: Commutative algebra, II. Van Nostrand, New York, 1960. Zbl0121.27801MR120249

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.