Periods of integrals for S U ( n , 1 )

Stephen S. Kudla

Compositio Mathematica (1983)

  • Volume: 50, Issue: 1, page 3-63
  • ISSN: 0010-437X

How to cite

top

Kudla, Stephen S.. "Periods of integrals for $SU(n, 1)$." Compositio Mathematica 50.1 (1983): 3-63. <http://eudml.org/doc/89618>.

@article{Kudla1983,
author = {Kudla, Stephen S.},
journal = {Compositio Mathematica},
keywords = {dual reductive pairs; seesaw pair; rationality; periods of holomorphic forms; periods of binary theta series of weight two; special values of Eisenstein series of weight one},
language = {eng},
number = {1},
pages = {3-63},
publisher = {Martinus Nijhoff Publishers},
title = {Periods of integrals for $SU(n, 1)$},
url = {http://eudml.org/doc/89618},
volume = {50},
year = {1983},
}

TY - JOUR
AU - Kudla, Stephen S.
TI - Periods of integrals for $SU(n, 1)$
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 50
IS - 1
SP - 3
EP - 63
LA - eng
KW - dual reductive pairs; seesaw pair; rationality; periods of holomorphic forms; periods of binary theta series of weight two; special values of Eisenstein series of weight one
UR - http://eudml.org/doc/89618
ER -

References

top
  1. [1] G. Anderson: Theta functions and holomorphic differential forms on compact quotients of bounded symmetric domains. Thesis, Princeton University1980. Zbl0557.32006
  2. [2] A.N. Andrianov and G.N. Maloletkin: Behavior of theta series of degree n under modular substitutions. Math. USSR Izvestija39 (1975) 227-241. Zbl0326.10025
  3. [3] A. Ash, D. Mumford, M. Rapapport and Y. Tai: Smooth Compactifications of locally symmetric varities. Math. Sci. Press. Brookline, Mass.1975. Zbl0334.14007MR457437
  4. [4] S. Gelbart: Examples of dual reductive pairs. Proc. Symp. Pure Math.33 part 1 (1979) 287-296. Zbl0425.22024MR546603
  5. [5] E. Hecke: Zur theorie der elliptischen modulfunktionen. Math. Annalen97 (1926) 210-242. Zbl52.0377.04JFM52.0377.04
  6. [6] E. Hecke: Bestimmung der perioden gewisser integrale durch die theorie der Klassenkörpern. Math. Zeit. 28 (1928) 708-727. Zbl54.0405.01MR1544986JFM54.0405.01
  7. [7] R. Howe and I.I. Piatetski-Shapiro: Some examples of automorphic forms on Sp 4. To appear. Zbl0529.22012MR700131
  8. [8] R. Howe: Invariant theory and duality for classical groups over finite fields. Preprint. 
  9. [9] R. Howe: θ-series and invariant theory. Proc. Symp. Pure Math.33 part 1 (1976) 275-285. Zbl0423.22016
  10. [10] S. Kudla and J. Millson: Geodesic cycles and the Weil representation I; Quotients of hyperbolic space and Siegel modular forms. Comp. Math.45 (1982) 207-271. Zbl0495.10016MR651982
  11. [11] S. Kudla: Holomorphic Siegel modular forms associated to SO(n, 1). Math. Annalen256 (1981) 517-534. Zbl0465.10020MR628232
  12. [12] S. Kudla: On the integrals of certain singular theta functions. J. Fac. Sci. Univ. Tokyo. Sec. IA, 28 (1982) 439-463. Zbl0511.10019MR656030
  13. [13] I. Satake: Holomorphic imbeddings of symmetric domains into a Siegel space. Amer. J. Math.87 (1965) 425-461. Zbl0144.08202MR196134
  14. [14] G. Shimura: On canonical models of arithmetic quotients of bounded symmetric domains. Ann. Math. 91 (1970) 144-222. Zbl0237.14009MR257031
  15. [15] G. Shimura: On the Fourier coefficients of modular forms of several variables. Göttingen, Nachr. Akad, Wiss. (1975) 261-268. Zbl0332.32024MR485706
  16. [16] G. Shimura: Theta functions with complex multiplication. Duke Math. J. 43 (1976) 673-696. Zbl0371.14022MR424705
  17. [17] G. Shimura: The arithmetic of automorphic forms with respect to a unitary group. Ann. Math. 107 (1978) 569-605. Zbl0409.10016MR563087
  18. [18] N. Wallach: L2-automorphic forms and cohomology classes on arithmetic quotients of SU(p, q). Preprint. Zbl0533.10025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.