Dimension of convex hyperspaces : nonmetric case

M. Van de Vel

Compositio Mathematica (1983)

  • Volume: 50, Issue: 1, page 95-108
  • ISSN: 0010-437X

How to cite

top

Van de Vel, M.. "Dimension of convex hyperspaces : nonmetric case." Compositio Mathematica 50.1 (1983): 95-108. <http://eudml.org/doc/89622>.

@article{VandeVel1983,
author = {Van de Vel, M.},
journal = {Compositio Mathematica},
keywords = {rank; convex hyperspace dimension; nonmetric spaces; invariants of convex hyperspaces; subcontinua in a tree},
language = {eng},
number = {1},
pages = {95-108},
publisher = {Martinus Nijhoff Publishers},
title = {Dimension of convex hyperspaces : nonmetric case},
url = {http://eudml.org/doc/89622},
volume = {50},
year = {1983},
}

TY - JOUR
AU - Van de Vel, M.
TI - Dimension of convex hyperspaces : nonmetric case
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 50
IS - 1
SP - 95
EP - 108
LA - eng
KW - rank; convex hyperspace dimension; nonmetric spaces; invariants of convex hyperspaces; subcontinua in a tree
UR - http://eudml.org/doc/89622
ER -

References

top
  1. [1] J. Eckhoff: Der Satz von Radon in konvexen Produktstrukturen II. Monatsh. für Math.73 (1969) 7-30. Zbl0174.53701MR243427
  2. [2] R.E. Jamison: A General Theory of Convexity. Dissertation, University of Washington, Seattle, Washington, 1974. 
  3. [3] J.D. Lawson: The relation of breadth and co-dimension in topological semilattices. Duke Math. J.37 (2) (1970) 207-212. Zbl0199.32301MR258687
  4. [4] J.D. Lawson: The relation of breadth and co-dimension in topological semilattices II. Duke Math. J.38 (3) (1971) 555-559. Zbl0243.06004MR282891
  5. [5] J. &gt; Van Mill and M. Van De Vel: Subbases, convex sets, and hyperspaces. Pacific J. Math.92 (2) (1981) 385-402. Zbl0427.54006MR618073
  6. [6] J. Van Mill and M. Van De Vel: Equality of the Lebesgue and the inductive dimension functions for compact spaces with a uniform convexity. Coll. Math., to appear. Zbl0609.54025MR857852
  7. [7] M. Van De Vel: Pseudo-boundaries and pseudo-interiors for topological convexities. Diss. Math.210 (1983) 1-72. Zbl0528.52004MR695220
  8. [8] M. Van De Vel: Finite dimensional convex structures I: general results. Top Appl. 14 (1982) 201-225. Zbl0506.54027MR667667
  9. [9] M. Van De Vel: Finite dimensional convex structures II: the invariants. Top. Appl.16 (1983) 81-105. Zbl0556.52001MR702622
  10. [10] M. Van De Vel: A selection theorem for topological convex structures, to appear. Zbl0781.52002MR1169083
  11. [11] M. Van De Vel: On the rank of a topological convexity. Fund. Math.119, to appear. Zbl0558.52005MR731813
  12. [12] M. Van De Vel: Dimension of convex hyperspaces. Fund. Math., to appear. Zbl0557.54026MR753019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.