A structure theorem Lie algebras of unbounded derivations in C * -algebras

Palle E. T. Jørgensen

Compositio Mathematica (1984)

  • Volume: 52, Issue: 1, page 85-98
  • ISSN: 0010-437X

How to cite

top

Jørgensen, Palle E. T.. "A structure theorem Lie algebras of unbounded derivations in $C*$-algebras." Compositio Mathematica 52.1 (1984): 85-98. <http://eudml.org/doc/89654>.

@article{Jørgensen1984,
author = {Jørgensen, Palle E. T.},
journal = {Compositio Mathematica},
keywords = {faithful, ergodic action; -algebra; Lie algebra of all `*- derivations; approximately inner; torsion free; direct decomposition},
language = {eng},
number = {1},
pages = {85-98},
publisher = {Martinus Nijhoff Publishers},
title = {A structure theorem Lie algebras of unbounded derivations in $C*$-algebras},
url = {http://eudml.org/doc/89654},
volume = {52},
year = {1984},
}

TY - JOUR
AU - Jørgensen, Palle E. T.
TI - A structure theorem Lie algebras of unbounded derivations in $C*$-algebras
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 52
IS - 1
SP - 85
EP - 98
LA - eng
KW - faithful, ergodic action; -algebra; Lie algebra of all `*- derivations; approximately inner; torsion free; direct decomposition
UR - http://eudml.org/doc/89654
ER -

References

top
  1. [1] O. Bratteli, G.A. Elliott and P.E.T. Jørgensen: Decompostions of unbounded derivations into invariant and approximately inner parts. Journal für die reine und angewandte Math. (Crelle's Journal)346 (1984) 166-193. Zbl0515.46057MR727402
  2. [2] R.K. Lashof: Lie algebras of locally compact groups. Pac. J. Math.7 (1957) 1145-1162. Zbl0081.02204MR92104
  3. [3] D. Olesen, G.K. Pedersen and M. Takesaki: Ergodic actions of compact abelian groups. J. Operator Theory3 (1980) 237-269. Zbl0456.46053MR578942
  4. [4] N.S. Poulsen: On C∞-vectors and intertwining bilinear forms for the representations of Lie groups. J. Funct. Analysis9 (1972) 87-120. Zbl0237.22013
  5. [5] S. Sakai: Developments in the theory of unbounded derivations. In: Symp. in Pure Math., AMS Vol. 38, IInd (1982) 309-331. Zbl0533.46038MR679518
  6. [6] J. Slawny: On factor representations and the C*-algebra of the canonical commutation relations. Comm. Math. Phys.24 (1971) 151-170. Zbl0225.46068MR293942
  7. [7] E. Stømer: Spectra of ergodic transformations. J. funct. Analysis15 (1974) 202-215. Zbl0276.46031MR377544
  8. [8] H. Takai: On a problem of Sakai in unbounded derivations. J. Funct. Analysis43 (1981) 202-208. Zbl0501.46052MR633976
  9. [9] F. Goodman, and P.E.T. Jørgensen: Unbounded derivations commuting with compact group actions. Comm. Math. Phys.82 (1981) 399-405. Zbl0501.46061MR641770
  10. [10] G.A. Elliott: On the K-theory of the C*-algebra generated by a projective representation of a discrete abelian group. Copenhagen Preprint 1981. Zbl0542.46030
  11. [1] H. Araki, R. Haag, D. Kastler and M. Takesaki: Extension of KMS-states and chemical potential. Comm. Math. Phys.53 (1977) 97-134. MR443679
  12. [2] O. Bratteli and P.E.T. Jørgensen: Unbounded derivations tangential to compact groups of automorphisms. J. Functional Analysis48 (1982) 107-133. Zbl0485.46035MR671318
  13. [3] P.E.T. Jørgensen: Extensions of unbounded *-derivations in UHF C*-algebras. J. Functional Analysis45 (1982) 341-356. Zbl0486.46044MR650186
  14. [4] E.C. Lance and A. Niknam: Unbounded derivations of group C*-algebras. Proc. Amer. Math. Soc.61 (1976) 310-314. Zbl0345.46046MR428051
  15. [5] R.T. Powers and G. Price: Derivations vanishing on S(∞). Comm. Math. Phys.84 (1982) 439-447. Zbl0539.46042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.