Convex polytopes as matrix invariants

Gerard Sierksma; Klaas de Vos

Compositio Mathematica (1984)

  • Volume: 52, Issue: 2, page 203-210
  • ISSN: 0010-437X

How to cite

top

Sierksma, Gerard, and de Vos, Klaas. "Convex polytopes as matrix invariants." Compositio Mathematica 52.2 (1984): 203-210. <http://eudml.org/doc/89660>.

@article{Sierksma1984,
author = {Sierksma, Gerard, de Vos, Klaas},
journal = {Compositio Mathematica},
keywords = {matrix invariant; convex polytope},
language = {eng},
number = {2},
pages = {203-210},
publisher = {Martinus Nijhoff Publishers},
title = {Convex polytopes as matrix invariants},
url = {http://eudml.org/doc/89660},
volume = {52},
year = {1984},
}

TY - JOUR
AU - Sierksma, Gerard
AU - de Vos, Klaas
TI - Convex polytopes as matrix invariants
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 52
IS - 2
SP - 203
EP - 210
LA - eng
KW - matrix invariant; convex polytope
UR - http://eudml.org/doc/89660
ER -

References

top
  1. [1] R.M. Adin, Extreme positive operators on minimal and almost-minimal cones. Linear Algebra Appl.44 (1982) 61-86. Zbl0486.52003MR657699
  2. [2] A. Berman and R.J. Plemmons: Non -negative Matrices in the Mathematical Sciences. Academic (1979). Zbl0484.15016
  3. [3] L. Elsner: On matrices leaving invariant a nontrivial convex set. Linear Algebra Appl.42 (1982) 103-107. Zbl0484.15008MR656417
  4. [4] H.G. Eggleston: Convexity. Cambridge Univ. Press (1958). Zbl0086.15302MR124813
  5. [5] R. Loewy and H. Schneider: Indecomposable cones. Linear Algebra Appl.11 (1975) 235-245. Zbl0316.47026MR383036
  6. [6] G. Sierksma: Axiomatic Convexity Theory. Doct. Diss., Univ. Groningen (1976). 
  7. [7] G. Sierksma: Non-negative matrices; the open Leontief model. Linear Algebra Appl.26 (1979) 175-201. Zbl0409.90027
  8. [8] B.-S. Tam: Some aspects of Finite Dimensional Cones. Doct. Diss., Univ. Hongkong (1977). 
  9. [9] F.A. Valentine: Convex SetsNew York: McGraw-Hill (1964). Zbl0129.37203MR170264

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.