Smoothings of cusp singularities via triangle singularities

Robert Friedman; Henry Pinkham

Compositio Mathematica (1984)

  • Volume: 53, Issue: 3, page 303-316
  • ISSN: 0010-437X

How to cite

top

Friedman, Robert, and Pinkham, Henry. "Smoothings of cusp singularities via triangle singularities." Compositio Mathematica 53.3 (1984): 303-316. <http://eudml.org/doc/89689>.

@article{Friedman1984,
author = {Friedman, Robert, Pinkham, Henry},
journal = {Compositio Mathematica},
keywords = {minimal resolution of the dual of a smoothable two dimensional; cusp singularity; anticanonical divisor on a rational surface; smoothability; versal deformation of the triangle singularity; minimal resolution of the dual of a smoothable two dimensional cusp singularity},
language = {eng},
number = {3},
pages = {303-316},
publisher = {Martinus Nijhoff Publishers},
title = {Smoothings of cusp singularities via triangle singularities},
url = {http://eudml.org/doc/89689},
volume = {53},
year = {1984},
}

TY - JOUR
AU - Friedman, Robert
AU - Pinkham, Henry
TI - Smoothings of cusp singularities via triangle singularities
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 53
IS - 3
SP - 303
EP - 316
LA - eng
KW - minimal resolution of the dual of a smoothable two dimensional; cusp singularity; anticanonical divisor on a rational surface; smoothability; versal deformation of the triangle singularity; minimal resolution of the dual of a smoothable two dimensional cusp singularity
UR - http://eudml.org/doc/89689
ER -

References

top
  1. [F] R. Friedman: Global smoothings of varieties with normal crossings, to appear in Annals of Math. Zbl0569.14002
  2. [FM] R. Friedman and R. Miranda: Smoothing cusp singularities of small length, to appear in Math. Annalen. Zbl0488.14006
  3. [La1] H. Laufer: Taut two dimensional singularities. Math. Ann.205 (1973) 131-164. Zbl0281.32010MR333238
  4. [La2] H. Laufer: On minimally elliptic singularities. Am. J. Math.99 (1977) 1257-1295. Zbl0384.32003MR568898
  5. [La3] H. Laufer: Simultaneous resolution of some families of isolated surface singularities, to appear in the Arcata singularities volume. 
  6. [L1] E. Looijenga: Rational surfaces with an effective anticanonical divisor. Annals of Math114 (1981) 267-322. Zbl0509.14035MR632841
  7. [L2] E. Looijenga: The smoothing components of a triangle singularity, to appear in the Arcata singularities volume. Zbl0568.14002
  8. [N] V.V. Nikulin: Integral symmetric bilinear forms and some of their applications. Math. USSR Izvestiya14 (1980) 103-167. Zbl0427.10014
  9. [P0] H. Pinkham: Deformations of algebraic varieties with G m action. Asterisque20 (1974) Soc. Math. France. Zbl0304.14006MR376672
  10. [P1] H. Pinkham: Groupe de monodromie des singularités unimodulaires exceptionnelles, C.R. Acad. Sc. Paris284 (A) (20 Juin 1977) 1515-1518. Zbl0391.14005MR439840
  11. [P2] H. Pinkham: Smoothings of the Dp,q,r singularities, p + q + r = 22. Appendix to a paper of E. LOOIJENGA, to appear in the Arcata singularities volume. 
  12. [P3] H. Pinkham: Automorphisms of cusps and Inoue-Hirzebruch surfaces. Comp. Math.52 (1984) 299-313. Zbl0573.14015MR756724
  13. [P4] H. Pinkham: Deformations of normal surface singularities with C* action. Math. Ann.232 (1978) 65-84. Zbl0351.14004MR498543
  14. [S] J.-P. Serre: Cours d'arithmétique. Paris, P.U.F. (1970). Zbl0225.12002
  15. [W1] J. Wahl: Elliptic deformations of minimally elliptic singularities. Math. Ann.253 (1980) 241-262. Zbl0431.14012MR597833
  16. [W2] J. Wahl: Smoothings of normal surface singularities. Topology20 (1981) 219-246. Zbl0484.14012MR608599
  17. [W3] J. Wahl: Derivations of negative weight and non-smoothability of certain singularities. Math. Ann.258 (1982) 383-398. Zbl0507.14029MR650944

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.