Monodromy of functions defined on isolated singularities of complete intersections

Alexandru Dimca

Compositio Mathematica (1985)

  • Volume: 54, Issue: 1, page 105-119
  • ISSN: 0010-437X

How to cite

top

Dimca, Alexandru. "Monodromy of functions defined on isolated singularities of complete intersections." Compositio Mathematica 54.1 (1985): 105-119. <http://eudml.org/doc/89694>.

@article{Dimca1985,
author = {Dimca, Alexandru},
journal = {Compositio Mathematica},
keywords = {analytic function germ; isolated singularities of complete intersections; monodromy group; contact invariant; fundamental group; Milnor fibers; Milnor numbers},
language = {eng},
number = {1},
pages = {105-119},
publisher = {Martinus Nijhoff Publishers},
title = {Monodromy of functions defined on isolated singularities of complete intersections},
url = {http://eudml.org/doc/89694},
volume = {54},
year = {1985},
}

TY - JOUR
AU - Dimca, Alexandru
TI - Monodromy of functions defined on isolated singularities of complete intersections
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 54
IS - 1
SP - 105
EP - 119
LA - eng
KW - analytic function germ; isolated singularities of complete intersections; monodromy group; contact invariant; fundamental group; Milnor fibers; Milnor numbers
UR - http://eudml.org/doc/89694
ER -

References

top
  1. [1] A. Dimca: Function germs defined on isolated hypersurface singularities, Comp. Math.53 (1984) 245-258. Zbl0548.32005MR766299
  2. [2] C.G. Gibson et al.: Topological stability of smooth mappings, Lecture Notes in Maths. 552, Springer Verlag, Berlin, (1976). Zbl0377.58006MR436203
  3. [3] G.-M. Greuel; Lê Dũng Tráng: Spitzen, Doppelpunkte und vertikale Tangenten in der Diskriminante verseller Deformationen von vollständigen Durchschnitten, Math. Ann.222 (1976) 71-88. Zbl0318.32015MR441961
  4. [4] C.M. Gusein Zade: Monodromy groups of isolated hypersurface singularities, Uspekhi Mat. Nauk, 32 (2) (1977) 23-65 (Russian). Zbl0363.32010MR476738
  5. [5] H. Hamm: Lokal topologische Eigenschaften complexer Räume, Math. Ann.191 (1971) 235-252. Zbl0214.22801MR286143
  6. [6] H. Hammand Lê Dũng Tráng: Un théorème de Zariski du type de Lefschetz, Ann. Sci. Ec. Norm. Sup.6 (1973) 317-366. Zbl0276.14003MR401755
  7. [7] I.N. Iomdine: Computation of the relative monodromy of a complex hypersurface, Funct. Analiz. i priloz.9 (1) (1975) 67-68 (Russian). Zbl0322.14004
  8. [8] K. Lamotke: Die Homologie isolierter Singularitäten, Math. Z.143 (1975) 27-44. Zbl0302.32013MR390278
  9. [9] K. Lamotke: The topology of complex projective varieties after S. LEFSCHETZ, Topology20 (1981) 15-51. Zbl0445.14010MR592569
  10. [10] Le Dũng Trãng: Calculation of Milnor number of an isolated singularity of complete intersection, Funct. Analiz. i priloz.8 (1974) 45-49 (Russian). Zbl0351.32007MR350064
  11. [11] J. Milnor: Singular points of complex hypersurfaces, Ann. of Math. Stud.61 (1968). Zbl0184.48405MR239612
  12. [12] D. Siersma: Classification and deformation of singularities. Thesis. Univ. of Amsterdam (1974). Zbl0283.57012MR350775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.