Stably free, projective right ideals

J. T. Stafford

Compositio Mathematica (1985)

  • Volume: 54, Issue: 1, page 63-78
  • ISSN: 0010-437X

How to cite

top

Stafford, J. T.. "Stably free, projective right ideals." Compositio Mathematica 54.1 (1985): 63-78. <http://eudml.org/doc/89698>.

@article{Stafford1985,
author = {Stafford, J. T.},
journal = {Compositio Mathematica},
keywords = {finitely generated R-module; projective module; non-trivial stably free right ideals; Weyl algebras; group rings; polynomial extensions; enveloping algebras; finite dimensional Lie algebras; Ore extension; skew Laurent extension; noetherian domain; commutative, noetherian, local domain; Krull dimension},
language = {eng},
number = {1},
pages = {63-78},
publisher = {Martinus Nijhoff Publishers},
title = {Stably free, projective right ideals},
url = {http://eudml.org/doc/89698},
volume = {54},
year = {1985},
}

TY - JOUR
AU - Stafford, J. T.
TI - Stably free, projective right ideals
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 54
IS - 1
SP - 63
EP - 78
LA - eng
KW - finitely generated R-module; projective module; non-trivial stably free right ideals; Weyl algebras; group rings; polynomial extensions; enveloping algebras; finite dimensional Lie algebras; Ore extension; skew Laurent extension; noetherian domain; commutative, noetherian, local domain; Krull dimension
UR - http://eudml.org/doc/89698
ER -

References

top
  1. [1] B.A. Artamonov: Projective, nonfree modules over group rings of solvable groups(Russian) Mat. sb. (N.S.)116 (1981) 232-244. Zbl0474.16007MR637862
  2. [2] W. Borho and R. Rentschler: Oresche Teilmengen in Einhüllenden Algebren, Math. Ann.217 (1975) 201-210. Zbl0297.17004MR401853
  3. [3] N. Jacobson: Lie algebras, Tracts in Pure and Applied Math. No. 10, Interscience, New York (1962). Zbl0121.27504MR143793
  4. [4] T.Y. Lam: Serre's conjecture, Lecture Notes in Math. No. 635, Springer-Verlag, Berlin/New York (1978). Zbl0373.13004MR485842
  5. [5] J. Lewin: Projective modules over group algebras of torsion-free groups, Michigan Math. J.29 (1982) 59-64. Zbl0483.16008MR646371
  6. [6] M. Ojanguren and R. Sridharan: Cancellation of Azumaya algebras, J. Algebra18 (1971) 501-505. Zbl0223.16006MR276271
  7. [7] D. Quillen: Higher algebraic K-theory, In: Algebraic K-theory I: Higher K-theories, Lecture Notes in Math. No. 341, Springer-Verlag, Berlin/New York (1973). Zbl0292.18004
  8. [8] R. Resco, L.W. Small and J.T. Stafford: Krull and global dimension of semiprime Noetherian PI rings, Trans. Amer. Math. Soc.274 (1982) 285-296. Zbl0495.16008MR670932
  9. [9] G.S. Rinehart and A. Rosenberg: The global dimension of Ore extensions and Weyl algebras. In: Algebra, Topology and Category Theory: a Collection of Papers in Honor of Samuel Eilenberg, Academic Press, New York (1976). Zbl0336.16028MR409563
  10. [10] J.T. Stafford: Stable structure of noncommutative Noetherian rings, J. Algebra47 (1977) 244-267. Zbl0391.16009MR447335
  11. [11] J.T. Stafford: The stability theorems: algebraic K-theory for non-commutative Noetherian rings. In: Proc. Durham Conference on Noetherian Rings and Rings with Polynomial identity, (mimeographed notes, Leeds University) (1980). 
  12. [12] R.G. Swan: Vector bundles and projective modules, Trans. Amer. Math. Soc.105 (1962) 264-277. Zbl0109.41601MR143225
  13. [13] D.B. Webber: Ideals and modules of simple Noetherian hereditary rings, J. Algebra16 (1970) 239-242. Zbl0211.06201MR265395

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.