Decompositions of manifolds into codimension one submanifolds

R. J. Daverman

Compositio Mathematica (1985)

  • Volume: 55, Issue: 2, page 185-207
  • ISSN: 0010-437X

How to cite

top

Daverman, R. J.. "Decompositions of manifolds into codimension one submanifolds." Compositio Mathematica 55.2 (1985): 185-207. <http://eudml.org/doc/89715>.

@article{Daverman1985,
author = {Daverman, R. J.},
journal = {Compositio Mathematica},
keywords = {wild embeddings; codimension one submanifolds; decomposition space; locally flat; 3-manifolds},
language = {eng},
number = {2},
pages = {185-207},
publisher = {Martinus Nijhoff Publishers},
title = {Decompositions of manifolds into codimension one submanifolds},
url = {http://eudml.org/doc/89715},
volume = {55},
year = {1985},
}

TY - JOUR
AU - Daverman, R. J.
TI - Decompositions of manifolds into codimension one submanifolds
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 2
SP - 185
EP - 207
LA - eng
KW - wild embeddings; codimension one submanifolds; decomposition space; locally flat; 3-manifolds
UR - http://eudml.org/doc/89715
ER -

References

top
  1. [1] F.D. Ancel and J.W. Cannon: The locally flat approximation of cell-like embedding relations. Ann. of Math.109(2) (1979) 61-86. Zbl0405.57007MR519353
  2. [2] S. Armentrout: Cellular decompositions of 3-manifolds that yield 3-manifolds. Memoirs Amer. Math. Soc.107 (1970). Zbl0221.57003MR413104
  3. [3] R.H. Bing: E3 does not contain uncountably many mutually exclusive surfaces. Bull. Amer. Math. Soc.63 (1957) 404. Abstract # 60-801t. 
  4. [4] R.H. Bing: A surface is tame if its complement is 1-ULC. Trans. Amer. Math. Soc.101 (1961) 294-305. Zbl0109.15406MR131265
  5. [5] M. Brown: Locally flat embeddings of topological manifolds. Ann. of Math.75(2) (1962) 331-341. Zbl0201.56202MR133812
  6. [6] M. Brown: The monotone union of open n-cells is an open n-cell. Proc. Amer. Math. Soc.12 (1961) 812-814. Zbl0103.39305MR126835
  7. [7] J.L. Bryant: Concerning uncountable families of n-cells in En. Michigan Math. J.15 (1968) 477-479. Zbl0175.20603MR238285
  8. [8] A.V. Černavski: The equivalence of local flatness and local 1-connectedness for embeddings of (n-1)-dimensional manifolds in n-dimensional manifolds. Mat. Sb.75(133) (1973) 279-286 [ = Math USSR Sb.20 (1973) 297-304]. Zbl0286.57005MR334222
  9. [9] J. Cheeger and J.M. Kister: Counting topological manifolds. Topology9 (1970) 149-151. Zbl0199.58403MR256399
  10. [10] E.H. Connell: A topological h-cobordism theorem for n &gt; 5. Illinois J. Math.11 (1967) 300-309. Zbl0146.45201MR212808
  11. [11] D.S. Coram: Approximate fibrations - a geometric perspective, in Shape Theory and Geometric Topology. S. Mardešić and J. Segal (ed.), Lecture Notes in Math., vol. 870, Berlin: Springer-Verlag (1981) 37-47. Zbl0493.57006MR643521
  12. [12] D.S. Coram and P.F. DuvallJr.: Approximate fibrations. Rocky Mountain J. Math.7 (1977) 275-288. Zbl0367.55019MR442921
  13. [13] D.S. Coram and P.F. DuvallJr.: Mappings from S3 to S2 whose point inverses have the shape of a circle. Gen. Topology and its Appl.9 (1979) 239-246. Zbl0417.54014
  14. [14] R.J. Daverman: Locally nice codimension one manifolds are locally flat. Bull. Amer. Math. Soc.79 (1973) 410-413. Zbl0256.57005MR321095
  15. [15] R.J. Daverman: Every crumpled n-cube is a closed n-cell-complement. Michigan Math. J.24 (1977) 225-241. Zbl0376.57007MR488066
  16. [16] R.J. Daverman: Embedding phenomena based upon decomposition theory: wild Cantor sets satisfying strong homogeneity properties. Proc. Amer. Math. Soc.75 (1979) 177-182. Zbl0407.57011MR529237
  17. [17] R.H. Fox and E. Artin: Some wild cells and spheres in three-dimensional space. Ann. of Math.49 (2) (1948) 979-990. Zbl0033.13602MR27512
  18. [18] W. Haken: Some results on surfaces in 3-manifolds, in Studies in Modem Topology. P.J. Hilton (ed.), MAA Studies in Mathematics, Vol. 5, Prentice Hall, Englewood Cliffs, N.J. (1968) 39-98. Zbl0194.24902MR224071
  19. [19] N. Hosay: The sum of real cube and a crumpled cube is S3. Notices Amer. Math. Soc.10 (1963) 666. Abstract # 607-17. See also errata 11 (1964) 152. 
  20. [20] L.S. Husch: Approximating approximate fibrations by fibrations. Can. J. Math.29 (1977) 897-913. Zbl0366.55006MR500990
  21. [21] W. Jaco: Surfaces embedded in M2 X S1. Can. J. Math.22 (1970) 553-568. Zbl0205.53501MR267596
  22. [22] V.-T. Liem: Manifolds accepting codimension one sphere-like decompositions, preprint. Zbl0582.57009
  23. [23] L.L. Lininger: Some results on crumpled cubes. Trans. Amer. Math. Soc.118 (1965) 534-549. Zbl0134.43002MR178460
  24. [24] D.R. McMillan Jr.: Neighborhoods of surfaces in 3-manifolds. Michigan Math. J.14 (1967) 161-170. Zbl0148.17702MR212778
  25. [25] F. Quinn: Ends of Maps III: dimensions 4 and 5. Preprint Series 1982-83, No. 4, Aarhus Universitet Matematisk Institute. See also Addition to the same, preprint. MR679069
  26. [26] L.C. Siebenmann: Infinite simple homotopy types. Indag. Math.32 (1970) 479-495. Zbl0203.56002MR287542
  27. [27] L.C. Siebenmann: Approximating cellular maps by homeomorphisms. Topology11 (1973) 271-294. Zbl0216.20101MR295365
  28. [28] E.H. Spanier: Algebraic Topology. New York: McGraw-Hill Book Co (1966). Zbl0145.43303MR210112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.