Energy spectrum of certain harmonic mappings
Toshiaki Adachi; Toshikazu Sunada
Compositio Mathematica (1985)
- Volume: 56, Issue: 2, page 153-170
- ISSN: 0010-437X
Access Full Article
topHow to cite
topAdachi, Toshiaki, and Sunada, Toshikazu. "Energy spectrum of certain harmonic mappings." Compositio Mathematica 56.2 (1985): 153-170. <http://eudml.org/doc/89733>.
@article{Adachi1985,
author = {Adachi, Toshiaki, Sunada, Toshikazu},
journal = {Compositio Mathematica},
keywords = {energy spectrum; harmonic map; second variation formula},
language = {eng},
number = {2},
pages = {153-170},
publisher = {Martinus Nijhoff Publishers},
title = {Energy spectrum of certain harmonic mappings},
url = {http://eudml.org/doc/89733},
volume = {56},
year = {1985},
}
TY - JOUR
AU - Adachi, Toshiaki
AU - Sunada, Toshikazu
TI - Energy spectrum of certain harmonic mappings
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 56
IS - 2
SP - 153
EP - 170
LA - eng
KW - energy spectrum; harmonic map; second variation formula
UR - http://eudml.org/doc/89733
ER -
References
top- [1] R.L. Bishop and R.J. Crittenden: Geometry of Manifold, Academic Press: New York and London (1964). Zbl0132.16003MR169148
- [2] P. Buser and H. Karcher: Gromov's almost flat manifolds, Asterisque81 (1981). Zbl0459.53031MR619537
- [3] J. Eells and J. Sampson: Harmonic mappings of Riemannian manifold, Amer. J. Math.86 (1964) 109-160. Zbl0122.40102MR164306
- [4] J. Eells and L. Lemaire: A report on harmonic maps, Bull. London Math. Soc.10 (1978) 1-68. Zbl0401.58003MR495450
- [5] S. Gallot: Inégalité isoperimetrique sur les variétés compactes sans bord, to appear.
- [6] R. Gangolli: On the length spectra of certain compact manifolds of negative curvatureJ. Diff. Geom.12 (1977) 403-424. Zbl0365.53016MR650997
- [7] M. Gromov: Structures metriques sur les variétés riemannienes (rédigé par J. Lafontaine et P. Pansu), Cedic, Paris (1982). Zbl0509.53034MR682063
- [8] P. Hartman: On homotopic harmonic maps, Can. J. Math.19 (1967) 673-687. Zbl0148.42404MR214004
- [9] N. Hingston: Equivariant Morse theory and closed geodesics, preprint. Zbl0561.58007MR739783
- [10] H. Huber: Über die Isometriegruppe einer kompakten Mannigfaltigkeit mit negativer Krümmung, Helv. Phys. Acta45 (1972) 277-288.
- [11] H.C. Im Hof: Über die Isometriegruppe bei kompakten Mannigfaltigkeiten negativer Krümmung, Comment. Math. Helv.48 (1973) 14-30. Zbl0258.53040MR328819
- [12] M. Kalka, B. Shiffman and B. Wong: Finiteness and rigidities theorem for holomorphic mappings, Michigan Math. J.28 (1981) 289-295. Zbl0459.32011MR629361
- [13] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, John Wiley & Sons: New Nork (1963). Zbl0119.37502
- [14] L. Lemaire: Harmonic mappings of uniform bounded dilatation, Topology16 (1977) 199-201. Zbl0343.53029MR448412
- [15] P. Li: On the Sobolev constant and the p-spectrum of a compact Riemannian manifolds, Ann. scient. Éc. Norm. Sup.13 (1980) 451-469. Zbl0466.53023MR608289
- [16] N. Maeda: The isometry groups of compact manifolds with non-positive curvature, Proc. Japan Acad.51 (1975) 790-794. Zbl0341.53026MR397616
- [17] A. Manning: Topological entropy for geodesic flows, Ann. of Math.110 (1979) 567-573. Zbl0426.58016MR554385
- [18] G.A. Margulis: Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Analy. and Appl.3 (1969) 335-336. Zbl0207.20305MR257933
- [19] T. Nagano and B. Smyth: Minimal varieties and harmonic maps in tori, Comment. Math. Helu.50 (1975) 249-265. Zbl0326.53055MR390974
- [20] J. Noguchi and T. Sunada: Finiteness of the family of rational and meromorphic mappings into algebraic varieties, Amer. J. Math.104 (1982) 887-900. Zbl0502.14002MR667540
- [21] H.L. Royden: The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv.55 (1980) 547-558. Zbl0484.53053MR604712
- [22] R. Schoen and S.T. Yau: Compact group actions and the topology of manifolds with non-positive curvature, Topology18 (1979) 361-380. Zbl0424.58012MR551017
- [23] T. Sunada: Holomorphic mappings into a compact quotient of symmetric bounded domain, Nagoya Math. J.64 (1976) 159-175. Zbl0352.32030MR419848
- [24] T. Sunada: Rigidity of certain harmonic mappings, Invent. Math.51 (1979) 297-307. Zbl0418.31005MR530636
- [25] T. Sunada: Tchebotarev's density theorem for closed geodesics in a compact locally symmetric space of negative curvature, preprint.
- [26] T. Sunada: Geodesic flows and geodesic random walks, to appear in Advanced Studies in Pure Math.3. Zbl0599.58037MR758647
- [27] K. Uhlenbeck: Morse theory by perturbation methods with applications to harmonic maps, Trans. AMS.267 (1981) 569-583. Zbl0509.58012MR626490
- [28] A. Howard and A.J. Sommese, On the orders of the automorphism groups of certain projective manifolds, Progress in Math.14 (1981) 145-158. Zbl0483.32016MR642855
- [29] W. Parry and M. Pollicott: An analogue of the prime number theorem for closed orbits of Axion A flows, preprint. Zbl0537.58038MR727704
- [30] J. Vilms: Totally geodesic maps, J. Differential Geom.4 (1970) 73-79. Zbl0194.52901MR262984
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.