Elliptic curves and -extensions
Compositio Mathematica (1985)
- Volume: 56, Issue: 2, page 237-250
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] D. Bertrand: Probèmes arithmétiques liés à 1'exponentielle p-adique sur les courbes elliptiques. C.R. Acad. Sci. Paris Sér. A282, (1976) 1399-1401. Zbl0331.14014MR414497
- [2] J.W.S. Cassels: Arithmetic on curves of genus 1 (VII). J. Reine Angew. Math.216 (1964) 150-158. Zbl0146.42304MR169849
- [3] J.W.S. Cassels: Arithmetic on curves of genus 1 (VIII). J. Reine Angew. Math.217 (1965) 180-199. Zbl0241.14017MR179169
- [4] J. Coates: Infinite descent on elliptic curves with complex multiplication. In: Progress in Math. Vol. 35, pp. 107-138Boston: Birkhauser (1983). Zbl0541.14026MR717591
- [5] J. Coates and A. Wiles: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39 (1977) 223-251. Zbl0359.14009MR463176
- [6] R. Greenberg: On the structure of certain Galois groups. Invent. math.47 (1978) 85-99. Zbl0403.12004MR504453
- [7] R. Greenberg: On the Birch and Swinnerton-Dyer conjecture. To appear. Zbl0546.14015MR700770
- [8] B. Gross and D. Zagier: To appear.
- [9] G. Hochschild and J.-P. Serre: Cohomology of group extensions, Trans. Amer. Math. Soc.74 (1953) 110-134. Zbl0050.02104MR52438
- [10] G. Konovalov: The universal G-norms of formal groups over a local field. Ukranian Math. J.28 (1976) and 3 (1977) 310-311. Zbl0345.14015MR439853
- [11] E. Lutz: Sur 1'equation y2 = x3 - Ax - B dans les corps p-adiques. J. Reine Angew. Math.177 (1977) 237-247. Zbl0017.05307JFM63.0101.01
- [12] D. Rohrlich: On L-functions of elliptic curves and anticyclotomic towers. To appear. Zbl0565.14008MR735332
- [13] D. Rohrlich: On L-functions of elliptic curves and cyclotomic towers. To appear. Zbl0565.14006MR735333
- [14] K. Rubin: On the arithmetic of CM elliptic curves in Zp-extensions. Thesis, Harvard University (1980).
- [15] K. RUBIN Elliptic curveswith complex multiplication and the conjecture of Birch and Swinnerton-dyer. Invent. Math.64, (1981) 455-470. Zbl0506.14039MR632985
- [16] K. Rubin and A. Wiles: Mordell-Weil groups of elliptic curves over cyclotomic fields. In: Number Theory related to Fermat's last Theorem. Boston: Birkhauser (1982). Zbl0519.14017MR685299
- [17] J. Tate: Duality theorems in Galois cohomology over number fields. Proc. Internat. Congress Math. Stockholm 1962, pp. 288-295. Zbl0126.07002MR175892
- [18] M. Bashmakov: The cohomology of abelian varieties over a number field, Russian Math. Surveys27 (1972) 25-70 Zbl0271.14010