Cyclotomy and an extension of the Taniyama group

Greg W. Anderson

Compositio Mathematica (1986)

  • Volume: 57, Issue: 2, page 153-217
  • ISSN: 0010-437X

How to cite

top

Anderson, Greg W.. "Cyclotomy and an extension of the Taniyama group." Compositio Mathematica 57.2 (1986): 153-217. <http://eudml.org/doc/89753>.

@article{Anderson1986,
author = {Anderson, Greg W.},
journal = {Compositio Mathematica},
keywords = {Taniyama group; ulterior motives; -hypothesis of Lichtenbaum; Hecke L-series},
language = {eng},
number = {2},
pages = {153-217},
publisher = {Martinus Nijhoff Publishers},
title = {Cyclotomy and an extension of the Taniyama group},
url = {http://eudml.org/doc/89753},
volume = {57},
year = {1986},
}

TY - JOUR
AU - Anderson, Greg W.
TI - Cyclotomy and an extension of the Taniyama group
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 57
IS - 2
SP - 153
EP - 217
LA - eng
KW - Taniyama group; ulterior motives; -hypothesis of Lichtenbaum; Hecke L-series
UR - http://eudml.org/doc/89753
ER -

References

top
  1. [1] D. Blasius: On the critical values of Hecke L-series (to appear). Zbl0608.10029MR847951
  2. [2] G. Brattström: Jacobi-sum Hecke characters of a totally real abelian field, Séminarie de Théorie des Nombres, Bordeaux, expose no. 22 (1981-82). Zbl0528.12011MR695338
  3. [3] G. Brattström and S. Lichtenbaum: Jacobi-sum Hecke characters of imaginary quadratic fields, Comp. Math. (to appear). Zbl0584.12007MR768825
  4. [4] R.M. Damerell: L-functions of elliptic curves with complex multiplication, I, II, Acta Arith.17 (1970) 287-301; 19 (1971) 311-317. Zbl0229.12015MR285540
  5. [5] P. Deligne: Applications de la formule des traces aux sommes trigonométriques, SGA41/ 4, Lecture notes in math., Heidelberg: Springer. 569 (1977). Zbl0349.10031
  6. [6] P. Deligne: Valeurs de fonctions L et périodes d'intégrales. Proc. Symp. Pure Math. AMS33 (1979) 313-346. Zbl0449.10022MR546622
  7. [7] P. Deligne, J.S. Milne, A. Ogus and K.Y. Shih: Hodge cycles, motives, Shimura varieties, Lecture notes in math.New York: Springer. 900 (1982). Zbl0465.00010MR654325
  8. [8] D. Kubert: Jacobi sums and Hecke characters (preprint). Zbl0577.12004MR784285
  9. [9] D. Kubert and S. Lichtenbaum: Jacobi-sum Hecke characters, Comp. Math.48 (1983) 55-87. Zbl0513.12010MR700580
  10. [10] R.P. Langlands: Automorphic representations: Shimura varieties and motives. Ein märchen, Proc. Symp. Pure Math. AMS33 (1979) 205-246. Zbl0447.12009MR546619
  11. [11] N. Saavedra Rivano: Catégories tannakiennes, Lecture Notes in Math.New York: Springer. 265 (1979). Zbl0241.14008MR338002
  12. [12] J.-P. Serre: Abelian l-adic representations and elliptic curves, New York: W.A. Benjamin (1968). Zbl0186.25701MR263823
  13. [13] G. Shimura: On some arithmetic properties of modular forms of one and several variables, Ann. Math.102 (1975) 491-515. Zbl0327.10028MR491519
  14. [14] T. Shioda and T. Katsura: On Fermat varieties, Tohoku math. J.31 (1979) 97-115. Zbl0415.14022MR526513
  15. [15] C.L. Siegel: Berechnung von Zetafunctionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II.10 (1969) 87-102. Zbl0186.08804MR252349
  16. [16] William C. Waterhouse: Introduction to affine group schemes, GTM66, New York: Springer (1979). Zbl0442.14017MR547117
  17. [17] A. Weil: Sur la théorie du corps du classes, J. Math. Soc. Japan3 (1951) 1-35. (In collected works, New York: Springer, 1979.) Zbl0044.02901MR44569
  18. [18] A. Weil: Jacobi sums as "Grössencharaktere", Trans. Am. Math. Soc.73 (1952) 487-495. Zbl0048.27001MR51263
  19. [19] A. Weil: Basic number theory. Grundlehren Bd. 144, New York: Springer (1974). Zbl0326.12001MR427267
  20. [20] A. Weil: La cyclotomie jadis et naguère, Enseignement Math.XX (1974) 247-263. Zbl0352.12006MR441831
  21. [21] A. Weil: Sommes de Jacobi et caractères de Hecke, Göttingen Nachr. Nr.1, 14 pp. (1974). Zbl0367.10035MR392859
  22. [22] A. Weil: Sur les périodes des intégrales abéliennes, Comm. Pure Appl. Math.29 (1976) 813-819. Zbl0342.14020MR422164

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.