Cyclotomy and an extension of the Taniyama group

Greg W. Anderson

Compositio Mathematica (1986)

  • Volume: 57, Issue: 2, page 153-217
  • ISSN: 0010-437X

How to cite

top

Anderson, Greg W.. "Cyclotomy and an extension of the Taniyama group." Compositio Mathematica 57.2 (1986): 153-217. <http://eudml.org/doc/89753>.

@article{Anderson1986,
author = {Anderson, Greg W.},
journal = {Compositio Mathematica},
keywords = {Taniyama group; ulterior motives; -hypothesis of Lichtenbaum; Hecke L-series},
language = {eng},
number = {2},
pages = {153-217},
publisher = {Martinus Nijhoff Publishers},
title = {Cyclotomy and an extension of the Taniyama group},
url = {http://eudml.org/doc/89753},
volume = {57},
year = {1986},
}

TY - JOUR
AU - Anderson, Greg W.
TI - Cyclotomy and an extension of the Taniyama group
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 57
IS - 2
SP - 153
EP - 217
LA - eng
KW - Taniyama group; ulterior motives; -hypothesis of Lichtenbaum; Hecke L-series
UR - http://eudml.org/doc/89753
ER -

References

top
  1. [1] D. Blasius: On the critical values of Hecke L-series (to appear). Zbl0608.10029MR847951
  2. [2] G. Brattström: Jacobi-sum Hecke characters of a totally real abelian field, Séminarie de Théorie des Nombres, Bordeaux, expose no. 22 (1981-82). Zbl0528.12011MR695338
  3. [3] G. Brattström and S. Lichtenbaum: Jacobi-sum Hecke characters of imaginary quadratic fields, Comp. Math. (to appear). Zbl0584.12007MR768825
  4. [4] R.M. Damerell: L-functions of elliptic curves with complex multiplication, I, II, Acta Arith.17 (1970) 287-301; 19 (1971) 311-317. Zbl0229.12015MR285540
  5. [5] P. Deligne: Applications de la formule des traces aux sommes trigonométriques, SGA41/ 4, Lecture notes in math., Heidelberg: Springer. 569 (1977). Zbl0349.10031
  6. [6] P. Deligne: Valeurs de fonctions L et périodes d'intégrales. Proc. Symp. Pure Math. AMS33 (1979) 313-346. Zbl0449.10022MR546622
  7. [7] P. Deligne, J.S. Milne, A. Ogus and K.Y. Shih: Hodge cycles, motives, Shimura varieties, Lecture notes in math.New York: Springer. 900 (1982). Zbl0465.00010MR654325
  8. [8] D. Kubert: Jacobi sums and Hecke characters (preprint). Zbl0577.12004MR784285
  9. [9] D. Kubert and S. Lichtenbaum: Jacobi-sum Hecke characters, Comp. Math.48 (1983) 55-87. Zbl0513.12010MR700580
  10. [10] R.P. Langlands: Automorphic representations: Shimura varieties and motives. Ein märchen, Proc. Symp. Pure Math. AMS33 (1979) 205-246. Zbl0447.12009MR546619
  11. [11] N. Saavedra Rivano: Catégories tannakiennes, Lecture Notes in Math.New York: Springer. 265 (1979). Zbl0241.14008MR338002
  12. [12] J.-P. Serre: Abelian l-adic representations and elliptic curves, New York: W.A. Benjamin (1968). Zbl0186.25701MR263823
  13. [13] G. Shimura: On some arithmetic properties of modular forms of one and several variables, Ann. Math.102 (1975) 491-515. Zbl0327.10028MR491519
  14. [14] T. Shioda and T. Katsura: On Fermat varieties, Tohoku math. J.31 (1979) 97-115. Zbl0415.14022MR526513
  15. [15] C.L. Siegel: Berechnung von Zetafunctionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II.10 (1969) 87-102. Zbl0186.08804MR252349
  16. [16] William C. Waterhouse: Introduction to affine group schemes, GTM66, New York: Springer (1979). Zbl0442.14017MR547117
  17. [17] A. Weil: Sur la théorie du corps du classes, J. Math. Soc. Japan3 (1951) 1-35. (In collected works, New York: Springer, 1979.) Zbl0044.02901MR44569
  18. [18] A. Weil: Jacobi sums as "Grössencharaktere", Trans. Am. Math. Soc.73 (1952) 487-495. Zbl0048.27001MR51263
  19. [19] A. Weil: Basic number theory. Grundlehren Bd. 144, New York: Springer (1974). Zbl0326.12001MR427267
  20. [20] A. Weil: La cyclotomie jadis et naguère, Enseignement Math.XX (1974) 247-263. Zbl0352.12006MR441831
  21. [21] A. Weil: Sommes de Jacobi et caractères de Hecke, Göttingen Nachr. Nr.1, 14 pp. (1974). Zbl0367.10035MR392859
  22. [22] A. Weil: Sur les périodes des intégrales abéliennes, Comm. Pure Appl. Math.29 (1976) 813-819. Zbl0342.14020MR422164

NotesEmbed ?

top

You must be logged in to post comments.