The characterization of differential operators by locality : classical flows
Ola Bratteli; George A. Elliott; Derek W. Robinson
Compositio Mathematica (1986)
- Volume: 58, Issue: 3, page 279-319
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBratteli, Ola, Elliott, George A., and Robinson, Derek W.. "The characterization of differential operators by locality : classical flows." Compositio Mathematica 58.3 (1986): 279-319. <http://eudml.org/doc/89772>.
@article{Bratteli1986,
author = {Bratteli, Ola, Elliott, George A., Robinson, Derek W.},
journal = {Compositio Mathematica},
keywords = {partial differential operators can be characterized by locality},
language = {eng},
number = {3},
pages = {279-319},
publisher = {Martinus Nijhoff Publishers},
title = {The characterization of differential operators by locality : classical flows},
url = {http://eudml.org/doc/89772},
volume = {58},
year = {1986},
}
TY - JOUR
AU - Bratteli, Ola
AU - Elliott, George A.
AU - Robinson, Derek W.
TI - The characterization of differential operators by locality : classical flows
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 58
IS - 3
SP - 279
EP - 319
LA - eng
KW - partial differential operators can be characterized by locality
UR - http://eudml.org/doc/89772
ER -
References
top- [1] C.J.K. Batty: Derivations on compact spaces. Proc. London Math. Soc.42 (1981) 299-330. Zbl0403.46046MR607305
- [2] C.J.K. Batty: Local operators on C*-algebras. Edinburgh preprint (1983).
- [3] C.J.K. Batty: Derivations of abelian C*-algebras. Proceedings of Symposia in Pure Mathematics, 38 (1982), Part 2, 333-338. Zbl0498.46037MR679519
- [4] C. Berg and G. Forst: Potential Theory on Locally Compact Abelian Groups. Springer-Verlag, Berlin-Heidelberg- New York (1975). Zbl0308.31001MR481057
- [5] O. Bratteli, T. Digernes and G.A. Elliott: Locality and differential operators on C*-algebras, II. Operator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Math. 1132, Springer-Verlag, Berlin-Heidelberg-New York (1985) 46-83. Zbl0568.46051MR799563
- [6] O. Bratteli, T. Digernes and D.W. Robinson: Relative locality of derivations. J. Funct. Anal.59 (1984) 12-40. Zbl0548.46049MR763775
- [7] O. Bratteli, G.A. Elliott and D.E. Evans: Locality and differential operators on C*-algebras. J. Differential Equations (to appear). Zbl0593.46056MR851912
- [8] J. Dixmier and P. Malliavin: Factorisations de fonctions et de vecteurs indéfiniment différentiables. Bull. Sci. Math.102 (1978) 307-330. Zbl0392.43013MR517765
- [9] G. Forst: Convolution semigroups of local type, Math. Scand.34 (1974) 211-218. Zbl0291.43005MR355085
- [10] G. Lumer: Local operators, regular sets, and evolution equations of diffusion type. Functional Analysis and Approximation, Birkhäuser Verlag, Basel (1981) 51-71. Zbl0478.47022MR650264
- [11] R. Narasimhan: Analysis on Real and Complex Manifolds, Masson et Cie, Paris (1968). Zbl0188.25803MR251745
- [12] E. Nelson: Dynamical Theories of Brownian Motion, Princeton University Press (1967). Zbl0165.58502MR214150
- [13] J. Peetre: Une caractérisation abstraite des opérateurs différentiels, Math. Scand.7 (1959) 211-218. Zbl0089.32502MR112146
- Rectification à l'article Une caractérisation abstraite des opérateurs différentiels, Math. Scand.8 (1960) 116-120. Zbl0097.10402MR124611
- [14] J.V. Pulè and A. Verbeure: Dissipative operators for infinite classical systems and equilibrium, J. Math. Phys.20 (1979) 2286-2290. MR550706
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.