The characterization of differential operators by locality : classical flows

Ola Bratteli; George A. Elliott; Derek W. Robinson

Compositio Mathematica (1986)

  • Volume: 58, Issue: 3, page 279-319
  • ISSN: 0010-437X

How to cite

top

Bratteli, Ola, Elliott, George A., and Robinson, Derek W.. "The characterization of differential operators by locality : classical flows." Compositio Mathematica 58.3 (1986): 279-319. <http://eudml.org/doc/89772>.

@article{Bratteli1986,
author = {Bratteli, Ola, Elliott, George A., Robinson, Derek W.},
journal = {Compositio Mathematica},
keywords = {partial differential operators can be characterized by locality},
language = {eng},
number = {3},
pages = {279-319},
publisher = {Martinus Nijhoff Publishers},
title = {The characterization of differential operators by locality : classical flows},
url = {http://eudml.org/doc/89772},
volume = {58},
year = {1986},
}

TY - JOUR
AU - Bratteli, Ola
AU - Elliott, George A.
AU - Robinson, Derek W.
TI - The characterization of differential operators by locality : classical flows
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 58
IS - 3
SP - 279
EP - 319
LA - eng
KW - partial differential operators can be characterized by locality
UR - http://eudml.org/doc/89772
ER -

References

top
  1. [1] C.J.K. Batty: Derivations on compact spaces. Proc. London Math. Soc.42 (1981) 299-330. Zbl0403.46046MR607305
  2. [2] C.J.K. Batty: Local operators on C*-algebras. Edinburgh preprint (1983). 
  3. [3] C.J.K. Batty: Derivations of abelian C*-algebras. Proceedings of Symposia in Pure Mathematics, 38 (1982), Part 2, 333-338. Zbl0498.46037MR679519
  4. [4] C. Berg and G. Forst: Potential Theory on Locally Compact Abelian Groups. Springer-Verlag, Berlin-Heidelberg- New York (1975). Zbl0308.31001MR481057
  5. [5] O. Bratteli, T. Digernes and G.A. Elliott: Locality and differential operators on C*-algebras, II. Operator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Math. 1132, Springer-Verlag, Berlin-Heidelberg-New York (1985) 46-83. Zbl0568.46051MR799563
  6. [6] O. Bratteli, T. Digernes and D.W. Robinson: Relative locality of derivations. J. Funct. Anal.59 (1984) 12-40. Zbl0548.46049MR763775
  7. [7] O. Bratteli, G.A. Elliott and D.E. Evans: Locality and differential operators on C*-algebras. J. Differential Equations (to appear). Zbl0593.46056MR851912
  8. [8] J. Dixmier and P. Malliavin: Factorisations de fonctions et de vecteurs indéfiniment différentiables. Bull. Sci. Math.102 (1978) 307-330. Zbl0392.43013MR517765
  9. [9] G. Forst: Convolution semigroups of local type, Math. Scand.34 (1974) 211-218. Zbl0291.43005MR355085
  10. [10] G. Lumer: Local operators, regular sets, and evolution equations of diffusion type. Functional Analysis and Approximation, Birkhäuser Verlag, Basel (1981) 51-71. Zbl0478.47022MR650264
  11. [11] R. Narasimhan: Analysis on Real and Complex Manifolds, Masson et Cie, Paris (1968). Zbl0188.25803MR251745
  12. [12] E. Nelson: Dynamical Theories of Brownian Motion, Princeton University Press (1967). Zbl0165.58502MR214150
  13. [13] J. Peetre: Une caractérisation abstraite des opérateurs différentiels, Math. Scand.7 (1959) 211-218. Zbl0089.32502MR112146
  14. Rectification à l'article Une caractérisation abstraite des opérateurs différentiels, Math. Scand.8 (1960) 116-120. Zbl0097.10402MR124611
  15. [14] J.V. Pulè and A. Verbeure: Dissipative operators for infinite classical systems and equilibrium, J. Math. Phys.20 (1979) 2286-2290. MR550706

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.