Indecomposable projective modules on affine domains
Compositio Mathematica (1986)
- Volume: 60, Issue: 1, page 115-132
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSrinivas, V.. "Indecomposable projective modules on affine domains." Compositio Mathematica 60.1 (1986): 115-132. <http://eudml.org/doc/89792>.
@article{Srinivas1986,
author = {Srinivas, V.},
journal = {Compositio Mathematica},
keywords = {indecomposable projective modules on affine domains; Grothendieck group},
language = {eng},
number = {1},
pages = {115-132},
publisher = {Martinus Nijhoff Publishers},
title = {Indecomposable projective modules on affine domains},
url = {http://eudml.org/doc/89792},
volume = {60},
year = {1986},
}
TY - JOUR
AU - Srinivas, V.
TI - Indecomposable projective modules on affine domains
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 1
SP - 115
EP - 132
LA - eng
KW - indecomposable projective modules on affine domains; Grothendieck group
UR - http://eudml.org/doc/89792
ER -
References
top- [A] S.S. Abhyankar: Resolution of Singularities of embedded algebraic Surfaces. Academic Press: New York (1966). Zbl0147.20504MR217069
- [Ba] H. Bass: Algebraic K-Theory. Benjamin: New York (1968). Zbl0174.30302MR249491
- [Be] P. Berthellot: Cohomologie cristalline des schemas de characteristique p > 0. Lect. Notes in Math. No. 407, Springer-Verlag: New York (1976). Zbl0298.14012MR384804
- [Bl] S. Bloch: On an argument of Mumford in the theory of algebraic cycles. In: Algebraic Geometry, Angers 1979. A. Beauville (ed.). Sijthoff and Noordhoff (1980). Zbl0508.14004MR605343
- [BKL] S. Bloch, D. Kas, D. Lieberman: Zero cycles on surfaces with p g = 0. Comp. Math.33 (1976) 135-145. Zbl0337.14006MR435073
- [BS] S. Bloch, V. Srinivas: Remarks on correspondences and algebraic cycles. Amer. J. Math.105 (1983) 1235-1253. Zbl0525.14003MR714776
- [C] C. Chevalley: Sur la theorie de la variete de Picard. Amer. J. Math.82 (1960) 435-490. Zbl0127.37701MR118723
- [F] W. Fulton: Intersection Theory. Ergebnisse Math.3. Folge, Band 2. Springer-Verlag: New York (1984). Zbl0541.14005MR732620
- [G] P. Griffiths: On the periods of certain rational integrals I, II. Annals of Math.90 (1969) 460-541. Zbl0215.08103MR260733
- [H1] R. Hartshorne: Algebraic geometry. Grad. Texts in Math. 52. Springer-Verlag: New York (1977). Zbl0367.14001MR463157
- [H2] R. Hartshorne: Ample subvarieties of algebraic varieties. Lect. Notes in Math. No. 156. Springer-Verlag: New York (1970). Zbl0208.48901MR282977
- [I] L. Illusie: Complex de deRham-Witt et cohomologie cristalline. Ann. Sci. Ec. Norm. Sup.12 (1979) 501-661. Zbl0436.14007MR565469
- [K] S. Kleiman: Towards a numerical theory of ampleness. Ann. Math.84 (1966) 293-344. Zbl0146.17001MR206009
- [La] S. Lang: Abelian Varieties. Interscience: New York (1959). Zbl0098.13201MR106225
- [L1] M. Levine: A geometric theory of the Chow ring on singular varieties, preprint.
- [L2] M. Levine: Vector bundles on singular affine 3-folds, preprint.
- [LW] M. Levine, C. Weibel: Zero cycles and complete intersections on singular varieties, preprint. Zbl0555.14004MR794801
- [M1] D. Mumford: Abelian Varieties. Oxford Univ. Press: London (1970). Zbl0223.14022MR282985
- [M2] D. Mumford: Rational equivalence of 0-cycles on algebraic surfaces. J. Math. Kyoto Univ.9 (1968) 195-240. Zbl0184.46603MR249428
- [MK] M.P. Murthy, N. Mohan Kumar: Algebraic cycles and vector bundles over affine three-folds. Ann. Math.116 (1982) 579-591. Zbl0519.14009MR678482
- [MS] M.P. Murthy, R.G. Swan: Vector bundles over affine surfaces. Invent. Math.36 (1976) 125-165. Zbl0362.14006MR439842
- [R] A.A. Roitman: Rational equivalence of 0 cycles. Math. USSR Sbornik18 (1972) 571-588. Zbl0273.14001
- [S1] V. Srinivas: Zero cycles on a singular surface II, to appear in J. Reine Ang. Math. Zbl0603.14007MR809963
- [S2] V. Srinivas: Rational equivalence of 0-cycles on normal varieties over C, preprint.
- [SGA7] P. Deligne, N. Katz: Groupes de Monodromie en Geometrie Algébrique II. Lect. Notes in Math. No. 340 (1973). Zbl0258.00005MR354657
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.