Indecomposable projective modules on affine domains

V. Srinivas

Compositio Mathematica (1986)

  • Volume: 60, Issue: 1, page 115-132
  • ISSN: 0010-437X

How to cite


Srinivas, V.. "Indecomposable projective modules on affine domains." Compositio Mathematica 60.1 (1986): 115-132. <>.

author = {Srinivas, V.},
journal = {Compositio Mathematica},
keywords = {indecomposable projective modules on affine domains; Grothendieck group},
language = {eng},
number = {1},
pages = {115-132},
publisher = {Martinus Nijhoff Publishers},
title = {Indecomposable projective modules on affine domains},
url = {},
volume = {60},
year = {1986},

AU - Srinivas, V.
TI - Indecomposable projective modules on affine domains
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 1
SP - 115
EP - 132
LA - eng
KW - indecomposable projective modules on affine domains; Grothendieck group
UR -
ER -


  1. [A] S.S. Abhyankar: Resolution of Singularities of embedded algebraic Surfaces. Academic Press: New York (1966). Zbl0147.20504MR217069
  2. [Ba] H. Bass: Algebraic K-Theory. Benjamin: New York (1968). Zbl0174.30302MR249491
  3. [Be] P. Berthellot: Cohomologie cristalline des schemas de characteristique p &gt; 0. Lect. Notes in Math. No. 407, Springer-Verlag: New York (1976). Zbl0298.14012MR384804
  4. [Bl] S. Bloch: On an argument of Mumford in the theory of algebraic cycles. In: Algebraic Geometry, Angers 1979. A. Beauville (ed.). Sijthoff and Noordhoff (1980). Zbl0508.14004MR605343
  5. [BKL] S. Bloch, D. Kas, D. Lieberman: Zero cycles on surfaces with p g = 0. Comp. Math.33 (1976) 135-145. Zbl0337.14006MR435073
  6. [BS] S. Bloch, V. Srinivas: Remarks on correspondences and algebraic cycles. Amer. J. Math.105 (1983) 1235-1253. Zbl0525.14003MR714776
  7. [C] C. Chevalley: Sur la theorie de la variete de Picard. Amer. J. Math.82 (1960) 435-490. Zbl0127.37701MR118723
  8. [F] W. Fulton: Intersection Theory. Ergebnisse Math.3. Folge, Band 2. Springer-Verlag: New York (1984). Zbl0541.14005MR732620
  9. [G] P. Griffiths: On the periods of certain rational integrals I, II. Annals of Math.90 (1969) 460-541. Zbl0215.08103MR260733
  10. [H1] R. Hartshorne: Algebraic geometry. Grad. Texts in Math. 52. Springer-Verlag: New York (1977). Zbl0367.14001MR463157
  11. [H2] R. Hartshorne: Ample subvarieties of algebraic varieties. Lect. Notes in Math. No. 156. Springer-Verlag: New York (1970). Zbl0208.48901MR282977
  12. [I] L. Illusie: Complex de deRham-Witt et cohomologie cristalline. Ann. Sci. Ec. Norm. Sup.12 (1979) 501-661. Zbl0436.14007MR565469
  13. [K] S. Kleiman: Towards a numerical theory of ampleness. Ann. Math.84 (1966) 293-344. Zbl0146.17001MR206009
  14. [La] S. Lang: Abelian Varieties. Interscience: New York (1959). Zbl0098.13201MR106225
  15. [L1] M. Levine: A geometric theory of the Chow ring on singular varieties, preprint. 
  16. [L2] M. Levine: Vector bundles on singular affine 3-folds, preprint. 
  17. [LW] M. Levine, C. Weibel: Zero cycles and complete intersections on singular varieties, preprint. Zbl0555.14004MR794801
  18. [M1] D. Mumford: Abelian Varieties. Oxford Univ. Press: London (1970). Zbl0223.14022MR282985
  19. [M2] D. Mumford: Rational equivalence of 0-cycles on algebraic surfaces. J. Math. Kyoto Univ.9 (1968) 195-240. Zbl0184.46603MR249428
  20. [MK] M.P. Murthy, N. Mohan Kumar: Algebraic cycles and vector bundles over affine three-folds. Ann. Math.116 (1982) 579-591. Zbl0519.14009MR678482
  21. [MS] M.P. Murthy, R.G. Swan: Vector bundles over affine surfaces. Invent. Math.36 (1976) 125-165. Zbl0362.14006MR439842
  22. [R] A.A. Roitman: Rational equivalence of 0 cycles. Math. USSR Sbornik18 (1972) 571-588. Zbl0273.14001
  23. [S1] V. Srinivas: Zero cycles on a singular surface II, to appear in J. Reine Ang. Math. Zbl0603.14007MR809963
  24. [S2] V. Srinivas: Rational equivalence of 0-cycles on normal varieties over C, preprint. 
  25. [SGA7] P. Deligne, N. Katz: Groupes de Monodromie en Geometrie Algébrique II. Lect. Notes in Math. No. 340 (1973). Zbl0258.00005MR354657

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.