The Lenz shift and wiener sausage in riemannian manifolds

Isaac Chavel; Edgar A. Feldman

Compositio Mathematica (1986)

  • Volume: 60, Issue: 1, page 65-84
  • ISSN: 0010-437X

How to cite

top

Chavel, Isaac, and Feldman, Edgar A.. "The Lenz shift and wiener sausage in riemannian manifolds." Compositio Mathematica 60.1 (1986): 65-84. <http://eudml.org/doc/89798>.

@article{Chavel1986,
author = {Chavel, Isaac, Feldman, Edgar A.},
journal = {Compositio Mathematica},
keywords = {Laplace-Beltrami operator; Riemannian manifold; Wiener sausage},
language = {eng},
number = {1},
pages = {65-84},
publisher = {Martinus Nijhoff Publishers},
title = {The Lenz shift and wiener sausage in riemannian manifolds},
url = {http://eudml.org/doc/89798},
volume = {60},
year = {1986},
}

TY - JOUR
AU - Chavel, Isaac
AU - Feldman, Edgar A.
TI - The Lenz shift and wiener sausage in riemannian manifolds
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 1
SP - 65
EP - 84
LA - eng
KW - Laplace-Beltrami operator; Riemannian manifold; Wiener sausage
UR - http://eudml.org/doc/89798
ER -

References

top
  1. [1] I. Chavel: Eigenvalues in Riemannian Geometry. Academic Press, New York, 1984. Zbl0551.53001MR768584
  2. [2] I. Chavel and E.A. Feldman: Diffusion on manifolds with small handles. Ind. U. Math. J., 34 (1985) 449-461. Zbl0574.58032MR794572
  3. [3] I. Chavel and E.A. Feldman: The Lenz shift and Wiener sausage in insulated domains Warwick Symposium on Stochastic Analysis (to appear). Zbl0616.60076MR894522
  4. [4] J. Cheeger and S.T. Yau: A lower bound for the heat kernel. Comm. Pure Appl. Math., 23 (1981) 465-480. Zbl0481.35003MR615626
  5. [5] J. Dodziuk: Maximum principles for parabolic inequalities and the heat flow on open manifolds. Ind. U. Math. J., 32 (1983) 703-716. Zbl0526.58047MR711862
  6. [6] M. Kac: Probabilistic methods in some problems in scattering theory. Rocky Mtn. Math. J., 4 (1974) 511-537. Zbl0314.47006MR510113
  7. [7] K. Karp and P. Li: The heat equation on complete Riemannian manifolds (to appear). 
  8. [8] S. Minakshisundaram: A generalization of Epstein zeta functions. Can. J. Math., 1 (1949) 320-329. Zbl0034.05103MR32861
  9. [9] S. Minakshisundaram: Eigenfunctions on Riemannian manifolds. J. Indian Math. Soc., 17 (1953) 158-165. Zbl0055.08702MR61750
  10. [10] S. Ozawa: Random media and eigenvalues of the Laplacian. Comm. Math. Phy., 94 (1984) 421-437. Zbl0555.35101MR763745
  11. [11] G.C. Papanicolaou and S.R.S. Varadhan: Diffusion in regions with many small holes. Lecture Notes in Control and Information, 75 (1980) 190-206, Springer Verlag, New York. Zbl0485.60076MR609184
  12. [12] S.C. Port and C.J. Stone: Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. Zbl0413.60067MR492329
  13. [13] J. Rauch and M. Taylor: Potential scattering on wildly perturbed domains. J. Fncl. Anal., 18 (1975) 27-59. Zbl0293.35056MR377303
  14. [14] B. Simon, Functional Integration and Quantum Physics. Academic Press, New York, 1979. Zbl0434.28013MR544188
  15. [15] F. Spitzer: Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrsch., 3 (1964) 110-121. Zbl0126.33505MR172343

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.