On the degree of a local zeta function
Compositio Mathematica (1987)
- Volume: 62, Issue: 1, page 17-29
- ISSN: 0010-437X
Access Full Article
topHow to cite
topMeuser, Diane. "On the degree of a local zeta function." Compositio Mathematica 62.1 (1987): 17-29. <http://eudml.org/doc/89831>.
@article{Meuser1987,
author = {Meuser, Diane},
journal = {Compositio Mathematica},
keywords = {degree of zeta function},
language = {eng},
number = {1},
pages = {17-29},
publisher = {Martinus Nijhoff Publishers},
title = {On the degree of a local zeta function},
url = {http://eudml.org/doc/89831},
volume = {62},
year = {1987},
}
TY - JOUR
AU - Meuser, Diane
TI - On the degree of a local zeta function
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 62
IS - 1
SP - 17
EP - 29
LA - eng
KW - degree of zeta function
UR - http://eudml.org/doc/89831
ER -
References
top- Danilov, V.I.: The geometry of toric varieties. Russian Math. Surveys33: 2 (1978) 97-154. Zbl0425.14013MR495499
- Denef, J.: Poles of complex powers and Newton polyhedron. To appear in Groupe d'Etude d'Analyse Ultrametrique, Paris'84-'85. Zbl0591.14016
- Igusa, J.-I.: Some observations on higher degree characters. Amer. J. Math.99 (1977) 393-417. Zbl0373.12008MR441933
- Igusa, J.-I.: Some results on p-adic complex powers. Amer. J. Math.106 (1984) 1013-1032. Zbl0589.14023MR761577
- Igusa, J.-I.: Some aspects of the arithmetic theory of polynomials. Preprint (1986). MR900822
- Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math.32 (1976) 1-32. Zbl0328.32007MR419433
- Lichtin, B.: Estimation of Lojasiewicz exponents and Newton polygons. Invent. Math.64 (1981) 417-429. Zbl0556.32003MR632982
- Lichtin, B. and Meuser, D.: Poles of a local zeta function and Newton polygons. Compositio Math.55 (1985) 313-332. Zbl0606.14022MR799820
- Shimura, G.: Reduction of algebraic varieties with respect to a discrete valuation of the basic field. Amer. J. Math.77 (1955) 134-176. Zbl0065.36701MR66687
- Varchenko, A.N.: Zeta function of monodromy and Newton's diagram. Invent. Math.37 (1977) 253-267. Zbl0333.14007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.