On the Siegel modular function field of degree three

S. Tsuyumine

Compositio Mathematica (1987)

  • Volume: 63, Issue: 1, page 83-98
  • ISSN: 0010-437X

How to cite

top

Tsuyumine, S.. "On the Siegel modular function field of degree three." Compositio Mathematica 63.1 (1987): 83-98. <http://eudml.org/doc/89853>.

@article{Tsuyumine1987,
author = {Tsuyumine, S.},
journal = {Compositio Mathematica},
keywords = {Siegel modular group; Siegel modular function field; seven generators of },
language = {eng},
number = {1},
pages = {83-98},
publisher = {Martinus Nijhoff Publishers},
title = {On the Siegel modular function field of degree three},
url = {http://eudml.org/doc/89853},
volume = {63},
year = {1987},
}

TY - JOUR
AU - Tsuyumine, S.
TI - On the Siegel modular function field of degree three
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 63
IS - 1
SP - 83
EP - 98
LA - eng
KW - Siegel modular group; Siegel modular function field; seven generators of
UR - http://eudml.org/doc/89853
ER -

References

top
  1. 1 F.A. Bogomolov and P.I. Katsylo: Rationality of some quotoent varieties. Math. USSR Sbornik54 (1986) 571-576. Zbl0591.14040
  2. 2 G. Frobenius: Über die Beziehungen zwischen den 28 Doppel-tangenten einer ebenen Curve vierter Ordnung. J. Reine Angew. Math.99 (1886) 275-314. Zbl18.0696.01JFM18.0696.01
  3. 3 J. Igusa: On Siegel modular forms of genus two. Amer. J. Math.84 (1962) 175-200. Zbl0133.33301MR141643
  4. 4 J. Igusa: On Siegel modular forms of genus two (II). Amer. J. Math.86 (1964) 392-412. Zbl0133.33301MR168805
  5. 5 J. Igusa: Modular forms and projective invariants. Amer. J. Math.89 (1967) 817-855. Zbl0159.50401MR229643
  6. 6 J. Kollár and F.O. Schreyer: The moduli of curves is stably rational for g ≦ 6. Duke Math. J.51 (1984) 239-242. Zbl0576.14027
  7. 7 H. Maass: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Mat. Fys. Medd. Vid. Selsk.38, 14 (1964). Zbl0244.10023MR171758
  8. 8 M. Ozeki and T. Washio: Explicit formulas for the Fourier coefficients (of Eistenstein series of degree 3). J. Reine. Angew. Math.345 (1983) 148-171. Zbl0512.10022MR717891
  9. 9 M. Ozeki and T. Washio: A table of the Fourier coefficients of Eistenstein series of degree 3. Proc. Japan Acad. Ser.A59 (1983) 252-255. Zbl0522.10018MR718614
  10. 10 S. Raghavan: On Eisenstein series of degree 3. J. Indian Math. Soc. (N.S.) 39 (1975) 103-120. Zbl0412.10020MR414493
  11. 11 B. Riemann: Zur Theorie der Abel'schen Funktionen für den Fall p = 3. In: Math. Werke. Teubener, Leipzig (1876) 456-476. 
  12. 12 R. Sasaki: On the equations defining curves of genus three and the moduli (Japanese). In: Around theta functions and Siegel modular forms. RIMS Kokyuroku447 (1982) 17-31. 
  13. 13 G. Shimura: On the zeta function of an abelian variety with complex multiplication. Ann. Math. (2) 94 (1971) 504-533. Zbl0242.14009MR288089
  14. 14 G. Shimura: On the field of rationality for an abelian variety. Nagoya Math. J.45 (1972) 167-178. Zbl0243.14012MR306215
  15. 15 G. Shimura: On the real points of an arithmetic quotient of a bounded symmetric domain. Math. Ann.215 (1975) 135-164. Zbl0394.14007MR572971
  16. 16 C.L. Siegel: Einführung in die Theorie der Modulfunktionen n-ten Grades. Math. Ann.116 (1939) 617-657. Zbl0021.20302MR1251JFM65.0357.01
  17. 17 C.L. Siegel: Moduln Abelscher Funktionen. Nachr. Akad. Wiss. Gòttingen25365-427. Zbl0122.32102MR166196
  18. 18 C.L. Siegel: Topics in complex function theory, Vol. 3. Wiley-Interscience, New York, (1973). Zbl0184.11201MR476762
  19. 19 S. Tsuyumine: On Siegel modular forms of degree three. Amer. J. Math.108 (1986) 755-862;Addendum, ibid., 1001-1003. Zbl0602.10015MR853217
  20. 20 H. Weber: Theorie der Abel'schen Funktionen vom Geschlecht 3. Berlin (1876). JFM08.0293.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.