A mapping theorem for topological sigma-compact manifolds
Compositio Mathematica (1987)
- Volume: 63, Issue: 2, page 209-216
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBerlanga, Ricardo. "A mapping theorem for topological sigma-compact manifolds." Compositio Mathematica 63.2 (1987): 209-216. <http://eudml.org/doc/89858>.
@article{Berlanga1987,
author = {Berlanga, Ricardo},
journal = {Compositio Mathematica},
keywords = {space of ends; -compact manifolds},
language = {eng},
number = {2},
pages = {209-216},
publisher = {Martinus Nijhoff Publishers},
title = {A mapping theorem for topological sigma-compact manifolds},
url = {http://eudml.org/doc/89858},
volume = {63},
year = {1987},
}
TY - JOUR
AU - Berlanga, Ricardo
TI - A mapping theorem for topological sigma-compact manifolds
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 63
IS - 2
SP - 209
EP - 216
LA - eng
KW - space of ends; -compact manifolds
UR - http://eudml.org/doc/89858
ER -
References
top- 1 L.V. Ahlfors and L. Sario: Riemann Surfaces. Princeton University Press (1960). Zbl0196.33801MR114911
- 2 R. Berlanga and D.B.A. Epstein: Measures on sigma-compact manifolds and their equivalence under homeomorphism. J. London Math. Soc. (2) 27(1983) 63-74. Zbl0523.28013MR686504
- 3 R. Berlanga: Homeomorphisms preserving a good measure in a manifold. Ph.D. Warwick (1983).
- 4 M. Brown: A mapping theorem for untriangulated manifolds. In: M.K. Fort (editor): Topology of 3-manifolds and related topics. Prentice Hall (1963) 92-94. MR158374
- 5 W. Hurewicz and H. Wallman: Dimension Theory. Princeton University Press (1948). Zbl0036.12501MR6493
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.