# A mapping theorem for topological sigma-compact manifolds

Compositio Mathematica (1987)

- Volume: 63, Issue: 2, page 209-216
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topBerlanga, Ricardo. "A mapping theorem for topological sigma-compact manifolds." Compositio Mathematica 63.2 (1987): 209-216. <http://eudml.org/doc/89858>.

@article{Berlanga1987,

author = {Berlanga, Ricardo},

journal = {Compositio Mathematica},

keywords = {space of ends; -compact manifolds},

language = {eng},

number = {2},

pages = {209-216},

publisher = {Martinus Nijhoff Publishers},

title = {A mapping theorem for topological sigma-compact manifolds},

url = {http://eudml.org/doc/89858},

volume = {63},

year = {1987},

}

TY - JOUR

AU - Berlanga, Ricardo

TI - A mapping theorem for topological sigma-compact manifolds

JO - Compositio Mathematica

PY - 1987

PB - Martinus Nijhoff Publishers

VL - 63

IS - 2

SP - 209

EP - 216

LA - eng

KW - space of ends; -compact manifolds

UR - http://eudml.org/doc/89858

ER -

## References

top- 1 L.V. Ahlfors and L. Sario: Riemann Surfaces. Princeton University Press (1960). Zbl0196.33801MR114911
- 2 R. Berlanga and D.B.A. Epstein: Measures on sigma-compact manifolds and their equivalence under homeomorphism. J. London Math. Soc. (2) 27(1983) 63-74. Zbl0523.28013MR686504
- 3 R. Berlanga: Homeomorphisms preserving a good measure in a manifold. Ph.D. Warwick (1983).
- 4 M. Brown: A mapping theorem for untriangulated manifolds. In: M.K. Fort (editor): Topology of 3-manifolds and related topics. Prentice Hall (1963) 92-94. MR158374
- 5 W. Hurewicz and H. Wallman: Dimension Theory. Princeton University Press (1948). Zbl0036.12501MR6493

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.